Menu Close

lim-n-n-1-n-n-




Question Number 182659 by mathlove last updated on 12/Dec/22
lim_(n→∞)  (((n!))^(1/n) /n)=?
$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\frac{\sqrt[{{n}}]{{n}!}}{{n}}=? \\ $$
Answered by Frix last updated on 12/Dec/22
n!∼((n^n (√(2πn)))/e^n )  lim_(n→∞)  (((n!))^(1/n) /n) =lim_(n→∞)  (((2πn)^(1/(2n)) )/e) =(1/e)
$${n}!\sim\frac{{n}^{{n}} \sqrt{\mathrm{2}\pi{n}}}{\mathrm{e}^{{n}} } \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\frac{\sqrt[{{n}}]{{n}!}}{{n}}\:=\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\frac{\left(\mathrm{2}\pi{n}\right)^{\frac{\mathrm{1}}{\mathrm{2}{n}}} }{\mathrm{e}}\:=\frac{\mathrm{1}}{\mathrm{e}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *