Menu Close

lim-n-n-3-n-2-n-1-n-




Question Number 54992 by Mikael_Marshall last updated on 15/Feb/19
lim_(n→∞) ((√(n^3 +n^2 +n+1))−n)
$$\underset{{n}\rightarrow\infty} {{lim}}\left(\sqrt{{n}^{\mathrm{3}} +{n}^{\mathrm{2}} +{n}+\mathrm{1}}−{n}\right) \\ $$
Answered by kaivan.ahmadi last updated on 15/Feb/19
×(((√(n^3 +n^2 +n+1))+n)/( (√(n^3 +n^2 +n+1))+n))=lim_(n→∞) ((n^3 +n+1)/( (√(n^3 +n^2 +n+1))+n))≈  lim_(n→∞) (n^3 /n^(3/2) )=∞
$$×\frac{\sqrt{{n}^{\mathrm{3}} +{n}^{\mathrm{2}} +{n}+\mathrm{1}}+{n}}{\:\sqrt{{n}^{\mathrm{3}} +{n}^{\mathrm{2}} +{n}+\mathrm{1}}+{n}}={li}\underset{{n}\rightarrow\infty} {{m}}\frac{{n}^{\mathrm{3}} +{n}+\mathrm{1}}{\:\sqrt{{n}^{\mathrm{3}} +{n}^{\mathrm{2}} +{n}+\mathrm{1}}+{n}}\approx \\ $$$${li}\underset{{n}\rightarrow\infty} {{m}}\frac{{n}^{\mathrm{3}} }{{n}^{\frac{\mathrm{3}}{\mathrm{2}}} }=\infty \\ $$$$ \\ $$
Answered by tm888 last updated on 16/Feb/19
=∞
$$=\infty \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *