Question Number 117164 by bobhans last updated on 10/Oct/20
$$\:\:\:\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\:\left(\frac{\mathrm{n}+\mathrm{9}}{\mathrm{2n}−\mathrm{1}}\right)^{\mathrm{n}} =? \\ $$
Answered by bemath last updated on 10/Oct/20
$$\:\:\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\:\left(\frac{\mathrm{2n}−\mathrm{1}+\mathrm{10}−\mathrm{n}}{\mathrm{2n}−\mathrm{1}}\right)^{\mathrm{n}} = \\ $$$$\:\:\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\left(\mathrm{1}−\frac{\mathrm{n}−\mathrm{10}}{\mathrm{2n}−\mathrm{1}}\right)^{\mathrm{n}} \:= \\ $$$$\:\:\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\left(\mathrm{1}−\frac{\mathrm{1}}{\frac{\mathrm{2n}−\mathrm{1}}{\mathrm{n}−\mathrm{10}}}\:\right)^{\mathrm{n}} = \\ $$$$\:\:\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\left[\left(\mathrm{1}−\frac{\mathrm{1}}{\left(\frac{\mathrm{2n}−\mathrm{1}}{\mathrm{n}−\mathrm{10}}\right)}\right)^{−\left(\frac{\mathrm{n}−\mathrm{10}}{\mathrm{2n}−\mathrm{1}}\right)} \right]^{−\frac{\mathrm{n}\left(\mathrm{2n}−\mathrm{1}\right)}{\mathrm{n}−\mathrm{10}}} = \\ $$$$\mathrm{e}\:^{\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\:\left(\frac{−\mathrm{2n}^{\mathrm{2}} +\mathrm{n}}{\mathrm{n}−\mathrm{10}}\right)} \:=\:\mathrm{e}^{\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\left(\frac{−\mathrm{2}+\frac{\mathrm{1}}{\mathrm{n}}}{\frac{\mathrm{1}}{\mathrm{n}}−\frac{\mathrm{10}}{\mathrm{n}^{\mathrm{2}} }}\right)} \\ $$$$=\:\mathrm{e}^{−\infty} \:=\:\mathrm{0} \\ $$
Answered by Olaf last updated on 10/Oct/20
$$\left(\frac{{n}+\mathrm{9}}{\mathrm{2}{n}−\mathrm{1}}\right)^{{n}} \:\underset{\infty} {\sim}\:\left(\frac{{n}}{\mathrm{2}{n}}\right)^{{n}} \:=\:\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{{n}} \underset{\infty} {\rightarrow}\:\mathrm{0} \\ $$$$\left(\mathrm{trivial}\right) \\ $$