Menu Close

lim-n-n-n-n-1-n-lim-n-2npi-n-n-n-n-e-n-1-n-lim-n-1-e-2npi-1-n-1-e-




Question Number 118777 by obaidullah last updated on 19/Oct/20
lim_(n→∞) (((n!)/n^n ))^(1/n) =lim_(n→∞) ((((√(2nπ)) n^n )/(n^n ×e^n )))^(1/n)   ⇒lim_(n→∞) (1/e)((√(2nπ)))^(1/n) =(1/e)
$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left(\frac{{n}!}{{n}^{{n}} }\right)^{\frac{\mathrm{1}}{{n}}} =\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left(\frac{\sqrt{\mathrm{2}{n}\pi}\:{n}^{{n}} }{{n}^{{n}} ×{e}^{{n}} }\right)^{\frac{\mathrm{1}}{{n}}} \\ $$$$\Rightarrow\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{1}}{{e}}\left(\sqrt{\mathrm{2}{n}\pi}\right)^{\frac{\mathrm{1}}{{n}}} =\frac{\mathrm{1}}{{e}} \\ $$
Answered by mathmax by abdo last updated on 19/Oct/20
where is the Question?
$$\mathrm{where}\:\mathrm{is}\:\mathrm{the}\:\mathrm{Question}? \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *