Question Number 36953 by rahul 19 last updated on 07/Jun/18
$$\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\:\mathrm{nsin}\:\left(\mathrm{2}\pi\sqrt{\mathrm{1}+\mathrm{n}^{\mathrm{2}} }\:\right)\:,\left(\:\mathrm{n}\in\mathbb{N}\right). \\ $$
Commented by rahul 19 last updated on 07/Jun/18
Thank you Prof
Commented by prof Abdo imad last updated on 07/Jun/18
$${we}\:{have}\:\sqrt{\mathrm{1}+{n}^{\mathrm{2}} }=\sqrt{{n}^{\mathrm{2}} \left(\mathrm{1}+\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\right)}={n}\left(\mathrm{1}+\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\right)^{\frac{\mathrm{1}}{\mathrm{2}}} \\ $$$${but}\:{we}\:{have}\:\left(\mathrm{1}+{u}\right)^{\alpha} \:\sim\:\mathrm{1}+\alpha\:\left({u}\rightarrow\mathrm{0}\right)\:{so} \\ $$$$\left(\mathrm{1}+\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\right)^{\frac{\mathrm{1}}{\mathrm{2}}} \sim\:\mathrm{1}\:+\frac{\mathrm{1}}{\mathrm{2}{n}^{\mathrm{2}} }\:\left({n}\rightarrow+\infty\right)\:{and} \\ $$$$\mathrm{2}\pi\sqrt{\mathrm{1}+{n}^{\mathrm{2}} }\sim\:\mathrm{2}\pi{n}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}{n}^{\mathrm{2}} }\right)\:=\mathrm{2}\pi{n}\:+\frac{\pi}{{n}}\:\Rightarrow \\ $$$${sin}\left(\mathrm{2}\pi\sqrt{\mathrm{1}+{n}^{\mathrm{2}} }\right)\:\:\sim\:{sin}\left(\frac{\pi}{{n}}\right)\Rightarrow \\ $$$${nsin}\left(\mathrm{2}\pi\sqrt{\mathrm{1}+{n}^{\mathrm{2}} }\right)\:\sim\:{n}\:{sin}\left(\frac{\pi}{{n}}\right)\:{but} \\ $$$${lim}_{{n}\rightarrow+\infty} {n}\:{sin}\left(\frac{\pi}{{n}}\right)\:={lim}_{{n}\rightarrow+\infty} \frac{{sin}\left(\frac{\pi}{{n}}\right)}{\frac{\pi}{{n}}}\:.\pi \\ $$$$=\pi×\mathrm{1}\:=\pi\:\Rightarrow\:{lim}_{{n}\rightarrow+\infty} {n}\:{sin}\left(\mathrm{2}\pi\sqrt{\mathrm{1}+{n}^{\mathrm{2}} }\right)=\pi\:. \\ $$
Commented by math khazana by abdo last updated on 09/Jun/18
$${nevermind}\:{sir} \\ $$
Answered by ajfour last updated on 07/Jun/18
$${L}=\underset{{n}\rightarrow\infty} {\mathrm{lim}}{n}\mathrm{sin}\:\left[\mathrm{2}{n}\pi\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}{n}^{\mathrm{2}} }+…\right)\right] \\ $$$$\:\:\:\:=\pi\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{sin}\:\left(\frac{\pi}{{n}}\right)}{\left(\frac{\pi}{{n}}\right)}\:=\:\boldsymbol{\pi}\:. \\ $$
Commented by Joel579 last updated on 07/Jun/18
$$\mathrm{Sir},\:\mathrm{pls}\:\mathrm{explain}\:\mathrm{how}\:\mathrm{to}\:\mathrm{get}\:\mathrm{sin}\:\left(\mathrm{2}{n}\pi\left(\mathrm{1}\:+\:\frac{\mathrm{1}}{\mathrm{2}{n}^{\mathrm{2}} }\:+\:…\right)\right)? \\ $$
Commented by rahul 19 last updated on 07/Jun/18
$$\mathrm{sin}\:\mathrm{2}\pi\mathrm{n}\:\sqrt{\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{2}} }+\mathrm{1}}=\:\mathrm{sin}\left(\mathrm{2}\pi\mathrm{n}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2n}^{\mathrm{2}} }+…\right)\right) \\ $$
Commented by rahul 19 last updated on 07/Jun/18
thank you sir