Menu Close

lim-n-nsin-2pi-1-n-2-n-N-




Question Number 36953 by rahul 19 last updated on 07/Jun/18
lim_(n→∞)  nsin (2π(√(1+n^2 )) ) ,( n∈N).
$$\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\:\mathrm{nsin}\:\left(\mathrm{2}\pi\sqrt{\mathrm{1}+\mathrm{n}^{\mathrm{2}} }\:\right)\:,\left(\:\mathrm{n}\in\mathbb{N}\right). \\ $$
Commented by rahul 19 last updated on 07/Jun/18
Thank you Prof ����
Commented by prof Abdo imad last updated on 07/Jun/18
we have (√(1+n^2 ))=(√(n^2 (1+(1/n^2 ))))=n(1+(1/n^2 ))^(1/2)   but we have (1+u)^α  ∼ 1+α (u→0) so  (1+(1/n^2 ))^(1/2) ∼ 1 +(1/(2n^2 )) (n→+∞) and  2π(√(1+n^2 ))∼ 2πn(1+(1/(2n^2 ))) =2πn +(π/n) ⇒  sin(2π(√(1+n^2 )))  ∼ sin((π/n))⇒  nsin(2π(√(1+n^2 ))) ∼ n sin((π/n)) but  lim_(n→+∞) n sin((π/n)) =lim_(n→+∞) ((sin((π/n)))/(π/n)) .π  =π×1 =π ⇒ lim_(n→+∞) n sin(2π(√(1+n^2 )))=π .
$${we}\:{have}\:\sqrt{\mathrm{1}+{n}^{\mathrm{2}} }=\sqrt{{n}^{\mathrm{2}} \left(\mathrm{1}+\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\right)}={n}\left(\mathrm{1}+\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\right)^{\frac{\mathrm{1}}{\mathrm{2}}} \\ $$$${but}\:{we}\:{have}\:\left(\mathrm{1}+{u}\right)^{\alpha} \:\sim\:\mathrm{1}+\alpha\:\left({u}\rightarrow\mathrm{0}\right)\:{so} \\ $$$$\left(\mathrm{1}+\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\right)^{\frac{\mathrm{1}}{\mathrm{2}}} \sim\:\mathrm{1}\:+\frac{\mathrm{1}}{\mathrm{2}{n}^{\mathrm{2}} }\:\left({n}\rightarrow+\infty\right)\:{and} \\ $$$$\mathrm{2}\pi\sqrt{\mathrm{1}+{n}^{\mathrm{2}} }\sim\:\mathrm{2}\pi{n}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}{n}^{\mathrm{2}} }\right)\:=\mathrm{2}\pi{n}\:+\frac{\pi}{{n}}\:\Rightarrow \\ $$$${sin}\left(\mathrm{2}\pi\sqrt{\mathrm{1}+{n}^{\mathrm{2}} }\right)\:\:\sim\:{sin}\left(\frac{\pi}{{n}}\right)\Rightarrow \\ $$$${nsin}\left(\mathrm{2}\pi\sqrt{\mathrm{1}+{n}^{\mathrm{2}} }\right)\:\sim\:{n}\:{sin}\left(\frac{\pi}{{n}}\right)\:{but} \\ $$$${lim}_{{n}\rightarrow+\infty} {n}\:{sin}\left(\frac{\pi}{{n}}\right)\:={lim}_{{n}\rightarrow+\infty} \frac{{sin}\left(\frac{\pi}{{n}}\right)}{\frac{\pi}{{n}}}\:.\pi \\ $$$$=\pi×\mathrm{1}\:=\pi\:\Rightarrow\:{lim}_{{n}\rightarrow+\infty} {n}\:{sin}\left(\mathrm{2}\pi\sqrt{\mathrm{1}+{n}^{\mathrm{2}} }\right)=\pi\:. \\ $$
Commented by math khazana by abdo last updated on 09/Jun/18
nevermind sir
$${nevermind}\:{sir} \\ $$
Answered by ajfour last updated on 07/Jun/18
L=lim_(n→∞) nsin [2nπ(1+(1/(2n^2 ))+...)]      =πlim_(n→∞) ((sin ((π/n)))/(((π/n)))) = 𝛑 .
$${L}=\underset{{n}\rightarrow\infty} {\mathrm{lim}}{n}\mathrm{sin}\:\left[\mathrm{2}{n}\pi\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}{n}^{\mathrm{2}} }+…\right)\right] \\ $$$$\:\:\:\:=\pi\underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{sin}\:\left(\frac{\pi}{{n}}\right)}{\left(\frac{\pi}{{n}}\right)}\:=\:\boldsymbol{\pi}\:. \\ $$
Commented by Joel579 last updated on 07/Jun/18
Sir, pls explain how to get sin (2nπ(1 + (1/(2n^2 )) + ...))?
$$\mathrm{Sir},\:\mathrm{pls}\:\mathrm{explain}\:\mathrm{how}\:\mathrm{to}\:\mathrm{get}\:\mathrm{sin}\:\left(\mathrm{2}{n}\pi\left(\mathrm{1}\:+\:\frac{\mathrm{1}}{\mathrm{2}{n}^{\mathrm{2}} }\:+\:…\right)\right)? \\ $$
Commented by rahul 19 last updated on 07/Jun/18
sin 2πn (√((1/n^2 )+1))= sin(2πn(1+(1/(2n^2 ))+...))
$$\mathrm{sin}\:\mathrm{2}\pi\mathrm{n}\:\sqrt{\frac{\mathrm{1}}{\mathrm{n}^{\mathrm{2}} }+\mathrm{1}}=\:\mathrm{sin}\left(\mathrm{2}\pi\mathrm{n}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2n}^{\mathrm{2}} }+…\right)\right) \\ $$
Commented by rahul 19 last updated on 07/Jun/18
thank you sir����

Leave a Reply

Your email address will not be published. Required fields are marked *