Menu Close

lim-n-r-1-n-1-1-n-n-r-n-r-




Question Number 17205 by Arnab Maiti last updated on 02/Jul/17
lim_(n→∞)   Σ_(r=1) ^(n−1) (1/n)(√((n+r)/(n−r)))
limnn1r=11nn+rnr
Answered by ajfour last updated on 02/Jul/17
(r/n)→x , ⇒ dx→(1/n)  L=∫_0 ^(  1) (√((1+x)/(1−x))) dx    let x=cos 2θ  ⇒ dx=−2sin θcos θdθ   for x=0 , θ=π/4     and when x=1,  θ=0  since   (√((1+cos 2θ)/(1−cos 2θ))) =∣((cos θ)/(sin θ))∣=((cos θ)/(sin θ))   in [0, π/4]  so,  L=∫_(π/4) ^(  0)  ((cos θ)/(sin θ))(−2sin θcos θ)dθ      L=∫_0 ^(  π/4)  (1+cos 2θ)dθ        = (θ+((sin 2θ)/2))∣_0 ^(π/4)   finally,     L = (π/4)+(1/2) .
rnx,dx1nL=011+x1xdxletx=cos2θdx=2sinθcosθdθforx=0,θ=π/4andwhenx=1,θ=0since1+cos2θ1cos2θ=∣cosθsinθ∣=cosθsinθin[0,π/4]so,L=π/40cosθsinθ(2sinθcosθ)dθL=0π/4(1+cos2θ)dθ=(θ+sin2θ2)0π/4finally,L=π4+12.
Commented by Arnab Maiti last updated on 02/Jul/17
Thank you sir.
Thankyousir.

Leave a Reply

Your email address will not be published. Required fields are marked *