Question Number 98004 by Ar Brandon last updated on 11/Jun/20
$$\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\left[\mathrm{sin}\left(\mathrm{n}\right)+\mathrm{4}^{\mathrm{n}} ×\frac{\mathrm{3}}{\mathrm{n}^{\mathrm{2}} }×\frac{\mathrm{n}+\mathrm{1}}{\mathrm{n}^{\mathrm{2}} −\mathrm{4}}\right] \\ $$
Commented by bobhans last updated on 11/Jun/20
$$\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{sin}\:\mathrm{n}}{\mathrm{n}}\:×\:\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{3}.\mathrm{4}^{\mathrm{n}} }{\mathrm{n}}\:×\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{n}+\mathrm{1}}{\mathrm{n}^{\mathrm{2}} −\mathrm{4}} \\ $$$$=\:\mathrm{0}\:×\:\infty\:×\:\mathrm{0}\:=\:\mathrm{0}\: \\ $$$$\left[\:\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{3}.\mathrm{4}^{\mathrm{n}} }{\mathrm{n}}\:=\:\mathrm{3}\:×\:\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{ln}\left(\mathrm{4}\right).\mathrm{4}^{\mathrm{n}} }{\mathrm{1}}\:=\:\infty\:\right]\: \\ $$