Menu Close

lim-n-x-2n-x-2n-1-315-lim-n-x-2n-x-2n-1-2016-lim-n-x-2n-x-2n-1-




Question Number 55905 by gunawan last updated on 06/Mar/19
lim_(n→∞)  (x_(2n) +x_(2n+1) )=315  lim_(n→∞)  (x_(2n) +x_(2n−1) )=2016  lim_(n→∞)  (x_(2n) /x_(2n+1) )=...
$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\left({x}_{\mathrm{2}{n}} +{x}_{\mathrm{2}{n}+\mathrm{1}} \right)=\mathrm{315} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\left({x}_{\mathrm{2}{n}} +{x}_{\mathrm{2}{n}−\mathrm{1}} \right)=\mathrm{2016} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\frac{{x}_{\mathrm{2}{n}} }{{x}_{\mathrm{2}{n}+\mathrm{1}} }=… \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 06/Mar/19
lim_(n→∞)  (x_(2n) +x_(2n+1) )≥lim_(n→∞)  2((√(x_(2n) ×x_(2n+1) )) )  lim_(n→∞)  (x_(2n) +x_(2n−1) )≥lim_(n→∞) 2((√(x_(2n) ×x_(2n−1) )) )  ((lim_(n→∞)  ((√(x_(2n) ×x_(2n+1) )) ))/(lim_(n→∞) ((√(x_(2n) ×x_(2n−1) )) )))≤((315)/(2016))    wait....
$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\left({x}_{\mathrm{2}{n}} +{x}_{\mathrm{2}{n}+\mathrm{1}} \right)\geqslant\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\mathrm{2}\left(\sqrt{{x}_{\mathrm{2}{n}} ×{x}_{\mathrm{2}{n}+\mathrm{1}} }\:\right) \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\left({x}_{\mathrm{2}{n}} +{x}_{\mathrm{2}{n}−\mathrm{1}} \right)\geqslant\underset{{n}\rightarrow\infty} {\mathrm{lim}2}\left(\sqrt{{x}_{\mathrm{2}{n}} ×{x}_{\mathrm{2}{n}−\mathrm{1}} }\:\right) \\ $$$$\frac{\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\left(\sqrt{{x}_{\mathrm{2}{n}} ×{x}_{\mathrm{2}{n}+\mathrm{1}} }\:\right)}{\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left(\sqrt{{x}_{\mathrm{2}{n}} ×{x}_{\mathrm{2}{n}−\mathrm{1}} }\:\right)}\leqslant\frac{\mathrm{315}}{\mathrm{2016}} \\ $$$$ \\ $$$${wait}…. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *