Menu Close

lim-s-20s-2-2s-5s-2-1-5s-2-2s-




Question Number 111383 by john santu last updated on 03/Sep/20
  lim_(s→∞) (√(20s^2 +2s))−(√(5s^2 +1))−(√(5s^2 −2s))
$$\:\:\underset{{s}\rightarrow\infty} {\mathrm{lim}}\sqrt{\mathrm{20}{s}^{\mathrm{2}} +\mathrm{2}{s}}−\sqrt{\mathrm{5}{s}^{\mathrm{2}} +\mathrm{1}}−\sqrt{\mathrm{5}{s}^{\mathrm{2}} −\mathrm{2}{s}} \\ $$
Answered by bobhans last updated on 03/Sep/20
 L_1 = lim_(s→∞) (√(20s^2 +2s))−(√(20s^2 )) = ((2−0)/(2(√(20)))) = (1/(2(√5)))  L_2 = lim_(s→∞) (√(5s^2 )) −(√(5s^2 +1)) = 0  L_3  = lim_(s→∞) (√(5s^2 )) −(√(5s^2 −2s)) = ((0−(−2))/(2(√5))) = (1/( (√5)))  L = L_1 +L_2 +L_3 =(1/(2(√5))) + (1/( (√5))) = (3/(2(√5))) = ((3(√5))/(10))
$$\:\mathrm{L}_{\mathrm{1}} =\:\underset{\mathrm{s}\rightarrow\infty} {\mathrm{lim}}\sqrt{\mathrm{20s}^{\mathrm{2}} +\mathrm{2s}}−\sqrt{\mathrm{20s}^{\mathrm{2}} }\:=\:\frac{\mathrm{2}−\mathrm{0}}{\mathrm{2}\sqrt{\mathrm{20}}}\:=\:\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{5}}} \\ $$$$\mathrm{L}_{\mathrm{2}} =\:\underset{\mathrm{s}\rightarrow\infty} {\mathrm{lim}}\sqrt{\mathrm{5s}^{\mathrm{2}} }\:−\sqrt{\mathrm{5s}^{\mathrm{2}} +\mathrm{1}}\:=\:\mathrm{0} \\ $$$$\mathrm{L}_{\mathrm{3}} \:=\:\underset{\mathrm{s}\rightarrow\infty} {\mathrm{lim}}\sqrt{\mathrm{5s}^{\mathrm{2}} }\:−\sqrt{\mathrm{5s}^{\mathrm{2}} −\mathrm{2s}}\:=\:\frac{\mathrm{0}−\left(−\mathrm{2}\right)}{\mathrm{2}\sqrt{\mathrm{5}}}\:=\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}} \\ $$$$\mathrm{L}\:=\:\mathrm{L}_{\mathrm{1}} +\mathrm{L}_{\mathrm{2}} +\mathrm{L}_{\mathrm{3}} =\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{5}}}\:+\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{5}}}\:=\:\frac{\mathrm{3}}{\mathrm{2}\sqrt{\mathrm{5}}}\:=\:\frac{\mathrm{3}\sqrt{\mathrm{5}}}{\mathrm{10}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *