Menu Close

lim-x-0-0-1-arctan-t-sin-x-arctan-t-dt-arctan-x-




Question Number 162398 by qaz last updated on 29/Dec/21
lim_(x→0) ((∫_0 ^1 (arctan (t+sin x)−arctan t)dt)/(arctan x))=?
$$\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{arctan}\:\left(\mathrm{t}+\mathrm{sin}\:\mathrm{x}\right)−\mathrm{arctan}\:\mathrm{t}\right)\mathrm{dt}}{\mathrm{arctan}\:\mathrm{x}}=? \\ $$
Answered by aleks041103 last updated on 29/Dec/21
both go to 0  use l′hopital  ans=lim_(x→0) (((d/dx)∫_0 ^1 arctan(t+sinx) dt)/(1/(1+x^2 )))  (d/dx)∫_0 ^1 arctan(t+sinx) dt=  =(d/dx)∫_(sinx) ^(1+sinx) arctan t dt=  =arctan(1+sinx).(d/dx)(1+sinx) − arctan(sinx)(d/dx)sin(x)=  =cosx(arctan(1+sinx)−arctan(sin(x)))  ⇒ans.=lim_(x→0) ((cosx(arctan(1+sinx)−arctan(sin(x))))/(1/(1+x^2 )))=  =((1(arctan(1)−arctan(0)))/(1/(1+0)))=arctan(1)=(π/4)  ⇒ans.=(π/4)
$${both}\:{go}\:{to}\:\mathrm{0} \\ $$$${use}\:{l}'{hopital} \\ $$$${ans}=\underset{{x}\rightarrow\mathrm{0}} {{lim}}\frac{\frac{{d}}{{dx}}\int_{\mathrm{0}} ^{\mathrm{1}} {arctan}\left({t}+{sinx}\right)\:{dt}}{\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} }} \\ $$$$\frac{{d}}{{dx}}\int_{\mathrm{0}} ^{\mathrm{1}} {arctan}\left({t}+{sinx}\right)\:{dt}= \\ $$$$=\frac{{d}}{{dx}}\int_{{sinx}} ^{\mathrm{1}+{sinx}} {arctan}\:{t}\:{dt}= \\ $$$$={arctan}\left(\mathrm{1}+{sinx}\right).\frac{{d}}{{dx}}\left(\mathrm{1}+{sinx}\right)\:−\:{arctan}\left({sinx}\right)\frac{{d}}{{dx}}{sin}\left({x}\right)= \\ $$$$={cosx}\left({arctan}\left(\mathrm{1}+{sinx}\right)−{arctan}\left({sin}\left({x}\right)\right)\right) \\ $$$$\Rightarrow{ans}.=\underset{{x}\rightarrow\mathrm{0}} {{lim}}\frac{{cosx}\left({arctan}\left(\mathrm{1}+{sinx}\right)−{arctan}\left({sin}\left({x}\right)\right)\right)}{\frac{\mathrm{1}}{\mathrm{1}+{x}^{\mathrm{2}} }}= \\ $$$$=\frac{\mathrm{1}\left({arctan}\left(\mathrm{1}\right)−{arctan}\left(\mathrm{0}\right)\right)}{\frac{\mathrm{1}}{\mathrm{1}+\mathrm{0}}}={arctan}\left(\mathrm{1}\right)=\frac{\pi}{\mathrm{4}} \\ $$$$\Rightarrow{ans}.=\frac{\pi}{\mathrm{4}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *