Menu Close

lim-x-0-0-1-e-t-e-t-2-dt-1-cosx-




Question Number 145779 by Engr_Jidda last updated on 08/Jul/21
lim_(x→0) ∫_0 ^1 (e^t +e^(−t) −2)(dt/(1−cosx))
$${li}\underset{{x}\rightarrow\mathrm{0}} {{m}}\int_{\mathrm{0}} ^{\mathrm{1}} \left({e}^{{t}} +{e}^{−{t}} −\mathrm{2}\right)\frac{{dt}}{\mathrm{1}−{cosx}} \\ $$
Answered by ArielVyny last updated on 08/Jul/21
e^t +e^(−t) =2ch(t)  (1/(1−cosx))∫_0 ^1 2ch(t)−2dt=(1/(1−cosx))[2sh(t)−2t]_0 ^1   f(x)=((e^1 +e^(−1) −2)/(1−cosx))  limf(x)_(x→0) =+∞
$${e}^{{t}} +{e}^{−{t}} =\mathrm{2}{ch}\left({t}\right) \\ $$$$\frac{\mathrm{1}}{\mathrm{1}−{cosx}}\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{2}{ch}\left({t}\right)−\mathrm{2}{dt}=\frac{\mathrm{1}}{\mathrm{1}−{cosx}}\left[\mathrm{2}{sh}\left({t}\right)−\mathrm{2}{t}\right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$${f}\left({x}\right)=\frac{{e}^{\mathrm{1}} +{e}^{−\mathrm{1}} −\mathrm{2}}{\mathrm{1}−{cosx}} \\ $$$${limf}\left({x}\underset{{x}\rightarrow\mathrm{0}} {\right)}=+\infty \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *