Menu Close

lim-x-0-0-1-e-t-e-t-2-dt-1-cosx-




Question Number 145779 by Engr_Jidda last updated on 08/Jul/21
lim_(x→0) ∫_0 ^1 (e^t +e^(−t) −2)(dt/(1−cosx))
limx001(et+et2)dt1cosx
Answered by ArielVyny last updated on 08/Jul/21
e^t +e^(−t) =2ch(t)  (1/(1−cosx))∫_0 ^1 2ch(t)−2dt=(1/(1−cosx))[2sh(t)−2t]_0 ^1   f(x)=((e^1 +e^(−1) −2)/(1−cosx))  limf(x)_(x→0) =+∞
et+et=2ch(t)11cosx012ch(t)2dt=11cosx[2sh(t)2t]01f(x)=e1+e121cosxMissing \left or extra \right

Leave a Reply

Your email address will not be published. Required fields are marked *