Menu Close

lim-x-0-0-x-0-u-2-tan-1-1-t-dt-dt-x-x-cos-x-




Question Number 168966 by cortano1 last updated on 22/Apr/22
     lim_(x→0)  ((∫_0 ^( x)  (∫_0 ^( u^2 ) tan^(−1) (1+t)dt)dt )/(x−x cos x)) =?
limx00x(0u2tan1(1+t)dt)dtxxcosx=?
Answered by bobhans last updated on 22/Apr/22
  lim_(x→0)  ((∫_0 ^x (∫_0 ^u^2  tan^(−1) (1+t)dt)dt)/(x−xcos x))   = lim_(x→0)  ((∫_0 ^x^2  tan^(−1) (1+t)dt)/(1−(cos x−xsin x)))=lim_(x→0)  ((∫_0 ^x^2  tan^(−1) (1+t)dt)/(1+xsin x−cos x))   = lim_(x→0)  ((2x tan^(−1) (1+x^2 ))/(sin x+x cos x+sin x))  = (π/4).lim_(x→0)  ((2x)/(2sin x+xcos x)) = (π/2) lim_(x→0)   (1/(((2sin x)/x) +cos x))  = (π/2).(1/3) = (π/6)
limx00x(0u2tan1(1+t)dt)dtxxcosx=limx00x2tan1(1+t)dt1(cosxxsinx)=limx00x2tan1(1+t)dt1+xsinxcosx=limx02xtan1(1+x2)sinx+xcosx+sinx=π4.limx02x2sinx+xcosx=π2limx012sinxx+cosx=π2.13=π6
Answered by qaz last updated on 22/Apr/22
arctan (1+t)=arctan 1+arctan (t/(2+t))=(π/4)+arctan (1−(1/(1+(t/2))))   =(π/4)+arctan[1−(1−(t/2)+...)]=(π/4)+o(1)........(t→0)  ⇒  lim _(x→0) ((∫_0 ^( x)  (∫_0 ^( u^2 ) tan^(−1) (1+t)dt)dt )/(x−x cos x))   =lim_(x→0) ((∫_0 ^x ∫_0 ^u^2  [(π/4)+o(1)]dtdu)/((1/2)x^3 +o(x^3 )))  =lim_(x→0) ((∫_0 ^x [(π/4)u^2 +o(u^2 )]du)/((1/2)x^3 +o(x^3 )))  =lim_(x→0) (((π/(12))x^3 +o(x^3 ))/((1/2)x^3 +o(x^3 )))  =(π/6)
arctan(1+t)=arctan1+arctant2+t=π4+arctan(111+t2)=π4+arctan[1(1t2+)]=π4+o(1)..(t0)limx00x(0u2tan1(1+t)dt)dtxxcosx=limx00x0u2[π4+o(1)]dtdu12x3+o(x3)=limx00x[π4u2+o(u2)]du12x3+o(x3)=limx0π12x3+o(x3)12x3+o(x3)=π6

Leave a Reply

Your email address will not be published. Required fields are marked *