lim-x-0-0-x-0-u-2-tan-1-1-t-dt-dt-x-x-cos-x- Tinku Tara June 4, 2023 Limits 0 Comments FacebookTweetPin Question Number 168966 by cortano1 last updated on 22/Apr/22 limx→0∫0x(∫0u2tan−1(1+t)dt)dtx−xcosx=? Answered by bobhans last updated on 22/Apr/22 limx→0∫0x(∫0u2tan−1(1+t)dt)dtx−xcosx=limx→0∫0x2tan−1(1+t)dt1−(cosx−xsinx)=limx→0∫0x2tan−1(1+t)dt1+xsinx−cosx=limx→02xtan−1(1+x2)sinx+xcosx+sinx=π4.limx→02x2sinx+xcosx=π2limx→012sinxx+cosx=π2.13=π6 Answered by qaz last updated on 22/Apr/22 arctan(1+t)=arctan1+arctant2+t=π4+arctan(1−11+t2)=π4+arctan[1−(1−t2+…)]=π4+o(1)……..(t→0)⇒limx→0∫0x(∫0u2tan−1(1+t)dt)dtx−xcosx=limx→0∫0x∫0u2[π4+o(1)]dtdu12x3+o(x3)=limx→0∫0x[π4u2+o(u2)]du12x3+o(x3)=limx→0π12x3+o(x3)12x3+o(x3)=π6 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: calculate-A-n-k-0-n-1-k-2k-3-interms-of-n-Next Next post: calculate-0-1-x-x-1-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.