Menu Close

lim-x-0-0-x-1-sin-t-dt-x-a-then-a-2-1-




Question Number 169743 by naka3546 last updated on 07/May/22
lim_(x→0)   ((∫_0  ^( x) (√(1 + sin t)) dt)/x) = a  ,    then   a^2  − 1  =  ... ?
limx00x1+sintdtx=a,thena21=?
Answered by Mathspace last updated on 07/May/22
by hosital   lim_(x→0) ((∫_0 ^x (√(1+sint))dt)/x)  =lim_(x→0) ((√(1+sinx))/1)=1⇒a=1 ⇒  a^2 −1=0
byhositallimx00x1+sintdtx=limx01+sinx1=1a=1a21=0
Commented by naka3546 last updated on 07/May/22
Thank  you,  sir .
Thankyou,sir.
Answered by cortano1 last updated on 08/May/22
 2^(nd)  way   L=lim_(x→0)  ((∫_0 ^( x) (√(1+sin t)) dt)/x)    = lim_(x→0)  ((∫_0 ^( x) (sin (1/2)t+cos (1/2)t)dt)/x)    = lim_(x→0)  ((−2cos (1/2)x+2sin (1/2)x+2)/x)   = lim_(x→0)  ((2(sin (1/2)x+2sin^2 (1/4)x))/x)   = 2((1/2) +2.(1/4).0)=1 =a
2ndwayL=limx00x1+sintdtx=limx00x(sin12t+cos12t)dtx=limx02cos12x+2sin12x+2x=limx02(sin12x+2sin214x)x=2(12+2.14.0)=1=a

Leave a Reply

Your email address will not be published. Required fields are marked *