Menu Close

lim-x-0-1-1-1-x-1-ln-x-




Question Number 82815 by M±th+et£s last updated on 24/Feb/20
lim_(x→0^+ )  (1/((1+(1/x))^(1/(ln(x))) ))=?
$$\underset{{x}\rightarrow\mathrm{0}^{+} } {{lim}}\:\frac{\mathrm{1}}{\left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right)^{\frac{\mathrm{1}}{{ln}\left({x}\right)}} }=? \\ $$
Commented by mathmax by abdo last updated on 24/Feb/20
let f(x)=(1+(1/x))^(−(1/(lnx)))  ⇒f(x)=e^(−(1/(lnx))ln(1+(1/x)))   changement (1/x)=t give  f(x)=g(t) =e^(−(1/(−lnt))ln(1+t))  =e^((ln(1+t))/(lnt))   (x→0^+  ⇒t→+∞) ⇒  g(t)=e^((ln(t)+ln(1+(1/t)))/(lnt)) =e^(1+((ln(1+(1/t)))/(lnt)))  →e (t→+∞) ⇒  lim_(x→0^+ )   f(x)=e
$${let}\:{f}\left({x}\right)=\left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right)^{−\frac{\mathrm{1}}{{lnx}}} \:\Rightarrow{f}\left({x}\right)={e}^{−\frac{\mathrm{1}}{{lnx}}{ln}\left(\mathrm{1}+\frac{\mathrm{1}}{{x}}\right)} \:\:{changement}\:\frac{\mathrm{1}}{{x}}={t}\:{give} \\ $$$${f}\left({x}\right)={g}\left({t}\right)\:={e}^{−\frac{\mathrm{1}}{−{lnt}}{ln}\left(\mathrm{1}+{t}\right)} \:={e}^{\frac{{ln}\left(\mathrm{1}+{t}\right)}{{lnt}}} \:\:\left({x}\rightarrow\mathrm{0}^{+} \:\Rightarrow{t}\rightarrow+\infty\right)\:\Rightarrow \\ $$$${g}\left({t}\right)={e}^{\frac{{ln}\left({t}\right)+{ln}\left(\mathrm{1}+\frac{\mathrm{1}}{{t}}\right)}{{lnt}}} ={e}^{\mathrm{1}+\frac{{ln}\left(\mathrm{1}+\frac{\mathrm{1}}{{t}}\right)}{{lnt}}} \:\rightarrow{e}\:\left({t}\rightarrow+\infty\right)\:\Rightarrow \\ $$$${lim}_{{x}\rightarrow\mathrm{0}^{+} } \:\:{f}\left({x}\right)={e} \\ $$
Commented by M±th+et£s last updated on 24/Feb/20
thank you sir
$${thank}\:{you}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *