Menu Close

lim-x-0-1-1-x-2-cos-x-x-4-




Question Number 82988 by jagoll last updated on 26/Feb/20
lim_(x→0)  ((1−(√(1+x^2  ))cos x)/x^4 )
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}−\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} \:}\mathrm{cos}\:\mathrm{x}}{\mathrm{x}^{\mathrm{4}} } \\ $$
Commented by jagoll last updated on 26/Feb/20
my answer is (1/3). that is correct?
$$\mathrm{my}\:\mathrm{answer}\:\mathrm{is}\:\frac{\mathrm{1}}{\mathrm{3}}.\:\mathrm{that}\:\mathrm{is}\:\mathrm{correct}? \\ $$
Commented by mr W last updated on 26/Feb/20
=((1−(1+(x^2 /2)−(x^4 /8)+o(x^4 ))(1−(x^2 /2)+(x^4 /(24))+o(x^4 )))/x^4 )  =((1−(1−(x^4 /3)+o(x^4 )))/x^4 )  =(((x^4 /3)+o(x^4 ))/x^4 )  =(1/3)
$$=\frac{\mathrm{1}−\left(\mathrm{1}+\frac{{x}^{\mathrm{2}} }{\mathrm{2}}−\frac{{x}^{\mathrm{4}} }{\mathrm{8}}+{o}\left({x}^{\mathrm{4}} \right)\right)\left(\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}+\frac{{x}^{\mathrm{4}} }{\mathrm{24}}+{o}\left({x}^{\mathrm{4}} \right)\right)}{{x}^{\mathrm{4}} } \\ $$$$=\frac{\mathrm{1}−\left(\mathrm{1}−\frac{{x}^{\mathrm{4}} }{\mathrm{3}}+{o}\left({x}^{\mathrm{4}} \right)\right)}{{x}^{\mathrm{4}} } \\ $$$$=\frac{\frac{{x}^{\mathrm{4}} }{\mathrm{3}}+{o}\left({x}^{\mathrm{4}} \right)}{{x}^{\mathrm{4}} } \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}} \\ $$
Commented by jagoll last updated on 27/Feb/20
thank you sir
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir} \\ $$
Answered by jagoll last updated on 26/Feb/20

Leave a Reply

Your email address will not be published. Required fields are marked *