Question Number 78865 by jagoll last updated on 21/Jan/20
$$ \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt[{\mathrm{3}}]{\mathrm{1}+\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{3}} }\:}\:−\sqrt[{\mathrm{3}}]{\mathrm{2}}}{\mathrm{2x}^{\mathrm{3}} } \\ $$
Commented by jagoll last updated on 21/Jan/20
$$\mathrm{dear}\:\mathrm{mr}\:\mathrm{Mjs}\:.\:\mathrm{what}\:\mathrm{value}\:\mathrm{the}\:\mathrm{limit}? \\ $$$$\mathrm{i}'\mathrm{m}\:\mathrm{got}\:\frac{\mathrm{1}}{\mathrm{24}}.\:\mathrm{my}\:\mathrm{answer}\:\mathrm{is}\:\mathrm{correct}? \\ $$
Commented by john santu last updated on 21/Jan/20
$$\sqrt[{\mathrm{3}}]{\mathrm{1}+\sqrt{\mathrm{1}+{x}^{\mathrm{3}} }\:}\:−\sqrt[{\mathrm{3}}]{\mathrm{2}}\:=\: \\ $$$$\frac{\mathrm{1}+\sqrt{\mathrm{1}+{x}^{\mathrm{3}} }\:−\:\mathrm{2}}{\:\sqrt[{\mathrm{3}}]{\left(\mathrm{1}+\sqrt{\left.\mathrm{1}+{x}^{\mathrm{3}} \right)^{\mathrm{2}} }\:\:\right.}+\sqrt[{\mathrm{3}}]{\mathrm{2}\left(\mathrm{1}+\sqrt{\left.\mathrm{1}+{x}^{\mathrm{3}} \right)}\:\right.}+\sqrt[{\mathrm{3}}]{\mathrm{4}}}\:×\frac{\mathrm{1}}{\mathrm{2}{x}^{\mathrm{3}} }= \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\sqrt{\mathrm{1}+{x}^{\mathrm{3}} }\:−\mathrm{1}}{\mathrm{2}{x}^{\mathrm{3}} }\:×\frac{\mathrm{1}}{\mathrm{3}\:\sqrt[{\mathrm{3}}]{\mathrm{4}}}\:= \\ $$$$\frac{\mathrm{1}}{\mathrm{3}\:\sqrt[{\mathrm{3}}]{\mathrm{4}}}\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}{x}^{\mathrm{3}} \right)−\mathrm{1}}{\mathrm{2}{x}^{\mathrm{3}} }= \\ $$$$\frac{\mathrm{1}}{\mathrm{3}\:\sqrt[{\mathrm{3}}]{\mathrm{4}}}×\frac{\mathrm{1}}{\mathrm{4}}=\:\frac{\mathrm{1}}{\mathrm{12}\:\sqrt[{\mathrm{3}}]{\mathrm{4}}}×\frac{\sqrt[{\mathrm{3}}]{\mathrm{2}}}{\:\sqrt[{\mathrm{3}}]{\mathrm{2}}}\:=\:\frac{\sqrt[{\mathrm{3}}]{\mathrm{2}}}{\mathrm{24}}\:. \\ $$
Commented by john santu last updated on 21/Jan/20
$${wrong}\:{sir} \\ $$
Commented by jagoll last updated on 21/Jan/20
$$\frac{\sqrt[{\mathrm{3}}]{\mathrm{2}}}{\mathrm{24}}\:\mathrm{sir} \\ $$
Commented by jagoll last updated on 21/Jan/20
$$\mathrm{yes}\:\mathrm{sir}.\:\mathrm{i}\:\mathrm{agree}. \\ $$
Answered by MJS last updated on 21/Jan/20
$$\frac{\frac{{d}}{{dx}}\left[\sqrt[{\mathrm{3}}]{\mathrm{1}+\sqrt{\mathrm{1}+{x}^{\mathrm{3}} }}−\sqrt[{\mathrm{3}}]{\mathrm{2}}\right]}{\frac{{d}}{{dx}}\left[\mathrm{2}{x}^{\mathrm{3}} \right]}=\frac{\frac{{x}^{\mathrm{2}} }{\mathrm{2}\sqrt{\mathrm{1}+{x}^{\mathrm{3}} }\sqrt[{\mathrm{3}}]{\left(\mathrm{1}+\sqrt{\mathrm{1}+{x}^{\mathrm{3}} }\right)^{\mathrm{2}} }}}{\mathrm{6}{x}^{\mathrm{2}} }= \\ $$$$=\frac{\mathrm{1}}{\mathrm{12}\sqrt{\mathrm{1}+{x}^{\mathrm{3}} }\sqrt[{\mathrm{3}}]{\left(\mathrm{1}+\sqrt{\mathrm{1}+{x}^{\mathrm{3}} }\right)^{\mathrm{2}} }} \\ $$$$\mathrm{and}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{this}\:\mathrm{with}\:{x}=\mathrm{0}\:\mathrm{is}\:\frac{\sqrt[{\mathrm{3}}]{\mathrm{2}}}{\mathrm{24}} \\ $$
Commented by jagoll last updated on 21/Jan/20
$$\mathrm{thanks}\:\mathrm{sir} \\ $$
Commented by Henri Boucatchou last updated on 21/Jan/20
$$\boldsymbol{{A}}{lright}\:{with}\:\:{Hospital}\:{Rule} \\ $$
Answered by behi83417@gmail.com last updated on 22/Jan/20
$$\mathrm{1}+\mathrm{x}^{\mathrm{3}} =\mathrm{t}^{\mathrm{2}} \left[\mathrm{x}\rightarrow\mathrm{0}\Rightarrow\mathrm{t}\rightarrow\mathrm{1}\right] \\ $$$$\mathrm{L}=\underset{\mathrm{t}\rightarrow\mathrm{1}} {\mathrm{lim}}\frac{\sqrt[{\mathrm{3}}]{\mathrm{1}+\mathrm{t}}−\sqrt[{\mathrm{3}}]{\mathrm{2}}}{\mathrm{2}\left(\mathrm{t}^{\mathrm{2}} −\mathrm{1}\right)} \\ $$$$\mathrm{1}+\mathrm{t}=\mathrm{r}^{\mathrm{3}} \left[\mathrm{t}\rightarrow\mathrm{1}\Rightarrow\mathrm{r}\rightarrow\sqrt[{\mathrm{3}}]{\mathrm{2}}\right] \\ $$$$\mathrm{L}=\underset{\mathrm{r}\rightarrow\sqrt[{\mathrm{3}}]{\mathrm{2}}} {\mathrm{lim}}\frac{\mathrm{r}−\sqrt[{\mathrm{3}}]{\mathrm{2}}}{\mathrm{2}\left[\left(\mathrm{r}^{\mathrm{3}} −\mathrm{1}\right)^{\mathrm{2}} −\mathrm{1}\right]}=\underset{\mathrm{r}\rightarrow\sqrt[{\mathrm{3}}]{\mathrm{2}}} {\mathrm{lim}}\frac{\mathrm{1}}{\mathrm{2}\left[\mathrm{6r}^{\mathrm{2}} \left(\mathrm{r}^{\mathrm{3}} −\mathrm{1}\right)\right]}= \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}×\mathrm{6}\sqrt[{\mathrm{3}}]{\mathrm{4}}}=\frac{\sqrt[{\mathrm{3}}]{\mathrm{2}}}{\mathrm{24}} \\ $$
Commented by john santu last updated on 22/Jan/20
$${wrong}\:{sir}.\:{the}\:{equation}\:\sqrt{\mathrm{1}+{x}^{\mathrm{3}} } \\ $$$${not}\:\mathrm{1}+{x}^{\mathrm{3}\:} \\ $$