Menu Close

lim-x-0-1-2016x-2017-1-2017x-2016-x-2-without-L-H-or-series-




Question Number 186267 by TUN last updated on 02/Feb/23
lim_(x→0)  (((1+2016x)^(2017) −(1+2017x)^(2016) )/x^2 )  without L′H or series
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left(\mathrm{1}+\mathrm{2016}{x}\right)^{\mathrm{2017}} −\left(\mathrm{1}+\mathrm{2017}{x}\right)^{\mathrm{2016}} }{{x}^{\mathrm{2}} } \\ $$$${without}\:{L}'{H}\:{or}\:{series} \\ $$
Commented by JDamian last updated on 02/Feb/23
use binomial expansion
Answered by mahdipoor last updated on 02/Feb/23
(1+ax)^b =1+b(ax)+((b(b−1))/2)(ax)^2   +x^2 (i_3 x+i_4 x^2 +...+i_b x^(b−2) )  ⇒A=(((1+2016x)^(2017) −(1+2017x)^(2016) )/x^2 )=  ((2017×2016×2016^2 −2016×2015×2017^2 )/2)+  (j_3 x+...+j_(2017) x^(2015) )  lim A , x→0=  ((2017×2016×2016^2 −2016×2015×2017^2 )/2)  ((2017×2016)/2)
$$\left(\mathrm{1}+{ax}\right)^{{b}} =\mathrm{1}+{b}\left({ax}\right)+\frac{{b}\left({b}−\mathrm{1}\right)}{\mathrm{2}}\left({ax}\right)^{\mathrm{2}} \\ $$$$+{x}^{\mathrm{2}} \left({i}_{\mathrm{3}} {x}+{i}_{\mathrm{4}} {x}^{\mathrm{2}} +…+{i}_{{b}} {x}^{{b}−\mathrm{2}} \right) \\ $$$$\Rightarrow{A}=\frac{\left(\mathrm{1}+\mathrm{2016}{x}\right)^{\mathrm{2017}} −\left(\mathrm{1}+\mathrm{2017}{x}\right)^{\mathrm{2016}} }{{x}^{\mathrm{2}} }= \\ $$$$\frac{\mathrm{2017}×\mathrm{2016}×\mathrm{2016}^{\mathrm{2}} −\mathrm{2016}×\mathrm{2015}×\mathrm{2017}^{\mathrm{2}} }{\mathrm{2}}+ \\ $$$$\left({j}_{\mathrm{3}} {x}+…+{j}_{\mathrm{2017}} {x}^{\mathrm{2015}} \right) \\ $$$${lim}\:{A}\:,\:{x}\rightarrow\mathrm{0}= \\ $$$$\frac{\mathrm{2017}×\mathrm{2016}×\mathrm{2016}^{\mathrm{2}} −\mathrm{2016}×\mathrm{2015}×\mathrm{2017}^{\mathrm{2}} }{\mathrm{2}} \\ $$$$\frac{\mathrm{2017}×\mathrm{2016}}{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *