Menu Close

lim-x-0-1-3tan-2-x-2-sin-2-3x-




Question Number 78596 by jagoll last updated on 19/Jan/20
    lim_(x→0)  (1−3tan^2 x)^((2/(sin^2  3x))   ) = ?
$$ \\ $$$$ \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\mathrm{1}−\mathrm{3tan}\:^{\mathrm{2}} \mathrm{x}\right)^{\frac{\mathrm{2}}{\mathrm{sin}\:^{\mathrm{2}} \:\mathrm{3x}}\:\:\:} =\:?\: \\ $$
Commented by mathmax by abdo last updated on 19/Jan/20
let A(x)=(1−3tan^2 x)^(2/(sin^2 (3x)))  ⇒ A(x)=e^((2/(sin^2 (3x)))ln(1−3tan^2 x))   we have tanx ∼ x ⇒1−3tan^2 x ∼1−3x^2  and ln(1−3x^2 )∼−3x^2   also sin(3x) ∼3x ⇒sin^2 (3x)∼9x^2  ⇒  (2/(sin^2 (3x)))ln(1−3tan^2 x) ∼((−6x^2 )/(9x^2 )) =−(2/3) ⇒lim_(x→0) A(x)=e^(−(2/3))   =(1/((^3 (√(e^2 )))))
$${let}\:{A}\left({x}\right)=\left(\mathrm{1}−\mathrm{3}{tan}^{\mathrm{2}} {x}\right)^{\frac{\mathrm{2}}{{sin}^{\mathrm{2}} \left(\mathrm{3}{x}\right)}} \:\Rightarrow\:{A}\left({x}\right)={e}^{\frac{\mathrm{2}}{{sin}^{\mathrm{2}} \left(\mathrm{3}{x}\right)}{ln}\left(\mathrm{1}−\mathrm{3}{tan}^{\mathrm{2}} {x}\right)} \\ $$$${we}\:{have}\:{tanx}\:\sim\:{x}\:\Rightarrow\mathrm{1}−\mathrm{3}{tan}^{\mathrm{2}} {x}\:\sim\mathrm{1}−\mathrm{3}{x}^{\mathrm{2}} \:{and}\:{ln}\left(\mathrm{1}−\mathrm{3}{x}^{\mathrm{2}} \right)\sim−\mathrm{3}{x}^{\mathrm{2}} \\ $$$${also}\:{sin}\left(\mathrm{3}{x}\right)\:\sim\mathrm{3}{x}\:\Rightarrow{sin}^{\mathrm{2}} \left(\mathrm{3}{x}\right)\sim\mathrm{9}{x}^{\mathrm{2}} \:\Rightarrow \\ $$$$\frac{\mathrm{2}}{{sin}^{\mathrm{2}} \left(\mathrm{3}{x}\right)}{ln}\left(\mathrm{1}−\mathrm{3}{tan}^{\mathrm{2}} {x}\right)\:\sim\frac{−\mathrm{6}{x}^{\mathrm{2}} }{\mathrm{9}{x}^{\mathrm{2}} }\:=−\frac{\mathrm{2}}{\mathrm{3}}\:\Rightarrow{lim}_{{x}\rightarrow\mathrm{0}} {A}\left({x}\right)={e}^{−\frac{\mathrm{2}}{\mathrm{3}}} \\ $$$$=\frac{\mathrm{1}}{\left(^{\mathrm{3}} \sqrt{\left.{e}^{\mathrm{2}} \right)}\right.} \\ $$
Answered by john santu last updated on 19/Jan/20
we know that lim_(x→0)  (1+x)^(1/x) = e  now we work the question   lim_(x→0) [ (1+(−3tan^2 x))^(1/(−3tan^2 x)) ]^((−6tan^2 x)/(sin^2 3x))    = e^(lim_(x→0)  (((−6tan^2 x)/(sin^2 3x))))  = e^(−(6/9))  = (1/( (e^2 )^(1/(3 )) )) .
$${we}\:{know}\:{that}\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\mathrm{1}+{x}\right)^{\frac{\mathrm{1}}{{x}}} =\:{e} \\ $$$${now}\:{we}\:{work}\:{the}\:{question}\: \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left[\:\left(\mathrm{1}+\left(−\mathrm{3tan}\:^{\mathrm{2}} {x}\right)\right)^{\frac{\mathrm{1}}{−\mathrm{3tan}\:^{\mathrm{2}} {x}}} \right]\:^{\frac{−\mathrm{6tan}\:^{\mathrm{2}} {x}}{\mathrm{sin}\:^{\mathrm{2}} \mathrm{3}{x}}} \: \\ $$$$=\:{e}\:^{\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\frac{−\mathrm{6tan}\:^{\mathrm{2}} {x}}{\mathrm{sin}\:^{\mathrm{2}} \mathrm{3}{x}}\right)} \:=\:{e}\:^{−\frac{\mathrm{6}}{\mathrm{9}}} \:=\:\frac{\mathrm{1}}{\:\sqrt[{\mathrm{3}\:}]{{e}^{\mathrm{2}} }}\:.\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *