Question Number 126376 by benjo_mathlover last updated on 20/Dec/20
$$\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\mathrm{1}+\mathrm{3}{x}\right)^{−\frac{\mathrm{5}}{{x}}} \:? \\ $$
Answered by liberty last updated on 20/Dec/20
$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\mathrm{1}+\mathrm{3}{x}\right)^{−\frac{\mathrm{5}}{{x}}} =\:{e}^{\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\mathrm{1}+\mathrm{3}{x}−\mathrm{1}\right)\left(−\frac{\mathrm{5}}{{x}}\right)} \\ $$$$\:=\:{e}^{\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}−\left(\frac{\mathrm{15}{x}}{{x}}\right)} =\:{e}^{−\mathrm{15}} \\ $$
Answered by Dwaipayan Shikari last updated on 20/Dec/20
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\mathrm{1}+\mathrm{3}{x}\right)^{−\frac{\mathrm{5}}{{x}}} =\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\mathrm{1}+\mathrm{3}{x}\right)^{\frac{−\mathrm{15}}{\mathrm{3}{x}}} =\frac{\mathrm{1}}{{e}^{\mathrm{15}} } \\ $$
Answered by mathmax by abdo last updated on 20/Dec/20
$$\mathrm{f}\left(\mathrm{x}\right)=\left(\mathrm{1}+\mathrm{3x}\right)^{\frac{−\mathrm{5}}{\mathrm{x}}} \:\:\Rightarrow\mathrm{f}\left(\mathrm{x}\right)=\mathrm{e}^{−\frac{\mathrm{5}}{\mathrm{x}}\mathrm{ln}\left(\mathrm{1}+\mathrm{3x}\right)} \\ $$$$\mathrm{we}\:\mathrm{have}\:\mathrm{for}\:\mathrm{x}\:\sim\mathrm{0}\:\:\:\:\:\mathrm{ln}\left(\mathrm{1}+\mathrm{3x}\right)\sim\mathrm{3x}\:\Rightarrow−\frac{\mathrm{5}}{\mathrm{x}}\mathrm{ln}\left(\mathrm{1}+\mathrm{3x}\right)\sim−\frac{\mathrm{5}}{\mathrm{x}}\left(\mathrm{3x}\right)=−\mathrm{15}\:\Rightarrow \\ $$$$\mathrm{lim}_{\mathrm{x}\rightarrow\mathrm{0}} \mathrm{f}\left(\mathrm{x}\right)=\mathrm{e}^{−\mathrm{15}} \\ $$