Menu Close

Lim-x-0-1-cos-1-cos-x-x-4-




Question Number 184823 by mnjuly1970 last updated on 12/Jan/23
     Lim_( x→ 0^( +) )   ((  1−  cos ( 1− cos((√x) )))/x^( 4) )
$$ \\ $$$$\:\:\:\mathrm{Lim}_{\:{x}\rightarrow\:\mathrm{0}^{\:+} } \:\:\frac{\:\:\mathrm{1}−\:\:\mathrm{cos}\:\left(\:\mathrm{1}−\:\mathrm{cos}\left(\sqrt{{x}}\:\right)\right)}{{x}^{\:\mathrm{4}} } \\ $$
Answered by cortano1 last updated on 12/Jan/23
= lim_(x→0^+ )  ((sin^2 (1−cos (√x)))/(2x^4 ))  = lim_(x→0^+ )  (((1−cos (√x))^2  [((sin (1−cos (√x)))/(1−cos (√x))) ]^2 )/(2x^4 ))  = lim_(x→0^+ )  (((2sin^2 (((√x)/2)))^2 )/(2x^4 ))  = 2.lim_(x→0^+ )  (((sin^2 (((√x)/2)))/x^2 ))^2   =2.lim_(x→0^+ )  ((1/(4x)))^2 = ∞
$$=\:\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\:\frac{\mathrm{sin}\:^{\mathrm{2}} \left(\mathrm{1}−\mathrm{cos}\:\sqrt{{x}}\right)}{\mathrm{2}{x}^{\mathrm{4}} } \\ $$$$=\:\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\:\frac{\left(\mathrm{1}−\mathrm{cos}\:\sqrt{{x}}\right)^{\mathrm{2}} \:\left[\frac{\mathrm{sin}\:\left(\mathrm{1}−\mathrm{cos}\:\sqrt{{x}}\right)}{\mathrm{1}−\mathrm{cos}\:\sqrt{{x}}}\:\right]^{\mathrm{2}} }{\mathrm{2}{x}^{\mathrm{4}} } \\ $$$$=\:\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\:\frac{\left(\mathrm{2sin}\:^{\mathrm{2}} \left(\frac{\sqrt{{x}}}{\mathrm{2}}\right)\right)^{\mathrm{2}} }{\mathrm{2}{x}^{\mathrm{4}} } \\ $$$$=\:\mathrm{2}.\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\:\left(\frac{\mathrm{sin}\:^{\mathrm{2}} \left(\frac{\sqrt{{x}}}{\mathrm{2}}\right)}{{x}^{\mathrm{2}} }\right)^{\mathrm{2}} \\ $$$$=\mathrm{2}.\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\:\left(\frac{\mathrm{1}}{\mathrm{4}{x}}\right)^{\mathrm{2}} =\:\infty \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *