lim-x-0-1-cos-1-cos-x-x-x-x-x- Tinku Tara June 4, 2023 Limits 0 Comments FacebookTweetPin Question Number 32407 by saru53424@gmail.com last updated on 24/Mar/18 limx→01−cos(1−cosx)x×x×x×x Commented by abdo imad last updated on 24/Mar/18 ifyoumeanlimx→01−cos(1−cosx)x4inthiscaseitsbettertousehospitaltheoremletputu(x)=1−cos(1−cosx)andv(x)=x4⇒v′(x)=4x3⇒v″(x)=12x2⇒v(3)(x)=24x⇒v(4)(x)=24u′(x)=sinxsin(1−cosx)⇒u″(x)=cosxsin(1−cosx)+sinx.sinxcos(1−cosx)=cosxsin(1−cosx)+sin2xcos(1−cosx)u(3)(x)=−sinxsin(1−cosx)+cosx.sinxcos(1−cosx)+2sinxcosx.cos(1−cosx)−sin2xsin(1−cosx)=−sinxsin(1−cosx)+12sin(2x)cos(1−cosx)+sin(2x).cos(1−cosx)−sin2xsin(1−cosx)u(4)(x)=−cosxsin(1−cosx)−sinxsinxcos(1−cosx)+cos(2x)cos(1−cosx)−12sin(2x)sinxsin(1−cosx)+2cos(2x)cos(1−cosx)−sin(2x)sinxsin(1−cosx)−2sinxcosxsin(1−cosx)−sin3cos(1−cosx)u(4)(0)=1+2=3⇒limx→01−cos(1−cosx)x4=324=18+(perhaps)….. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-163473Next Next post: Question-32409 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.