Menu Close

lim-x-0-1-cos-ln-3x-1-3x-6-tan-3x-2-




Question Number 192433 by cortano12 last updated on 18/May/23
 lim_(x→0)  ((1−cos (ln (3x+1)))/(3x^6 −tan (3x^2 )))=?
$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}−\mathrm{cos}\:\left(\mathrm{ln}\:\left(\mathrm{3x}+\mathrm{1}\right)\right)}{\mathrm{3x}^{\mathrm{6}} −\mathrm{tan}\:\left(\mathrm{3x}^{\mathrm{2}} \right)}=? \\ $$
Answered by mehdee42 last updated on 18/May/23
tip :if  u→0  ⇒1−cosu∼(1/2)u^2   &  ln(u+1)∼u    &  tanu∼u  ⇒lim_(x→0) ((1−co(ln(3x+1)))/(3x^6 −tan(3x^2 )))=lim_(x→0) (((1/2)(ln(3x+1))^2 )/(3x^6 −3x^2 )) =lim_(x→0)  (((9x^2 )/2)/(3x^2 (x^4 −1)))=−(3/2) ✓
$${tip}\::{if}\:\:{u}\rightarrow\mathrm{0} \\ $$$$\Rightarrow\mathrm{1}−{cosu}\sim\frac{\mathrm{1}}{\mathrm{2}}{u}^{\mathrm{2}} \:\:\&\:\:{ln}\left({u}+\mathrm{1}\right)\sim{u}\:\:\:\:\&\:\:{tanu}\sim{u} \\ $$$$\Rightarrow{lim}_{{x}\rightarrow\mathrm{0}} \frac{\mathrm{1}−{co}\left({ln}\left(\mathrm{3}{x}+\mathrm{1}\right)\right)}{\mathrm{3}{x}^{\mathrm{6}} −{tan}\left(\mathrm{3}{x}^{\mathrm{2}} \right)}={lim}_{{x}\rightarrow\mathrm{0}} \frac{\frac{\mathrm{1}}{\mathrm{2}}\left({ln}\left(\mathrm{3}{x}+\mathrm{1}\right)\right)^{\mathrm{2}} }{\mathrm{3}{x}^{\mathrm{6}} −\mathrm{3}{x}^{\mathrm{2}} }\:={lim}_{{x}\rightarrow\mathrm{0}} \:\frac{\frac{\mathrm{9}{x}^{\mathrm{2}} }{\mathrm{2}}}{\mathrm{3}{x}^{\mathrm{2}} \left({x}^{\mathrm{4}} −\mathrm{1}\right)}=−\frac{\mathrm{3}}{\mathrm{2}}\:\checkmark \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *