Menu Close

lim-x-0-1-mx-1-nx-mn-x-




Question Number 80455 by jagoll last updated on 03/Feb/20
lim_(x→0) (((1+mx)/(1−nx)))^((mn)/x)
limx0(1+mx1nx)mnx
Commented by mr W last updated on 03/Feb/20
lim_(x→0) (((1+mx)/(1−nx)))^((mn)/x)   =lim_(x→0) ((((1/x)+m)/((1/x)−n)))^((mn)/x)   =lim_(t→∞) [(((t+m)/(t−n)))^t ]^(mn)   =lim_(t→∞) [(1+((m+n)/(t−n)))^t ]^(mn)   =lim_(t→∞) [(1+((m+n)/(t−n)))^(t−n) (1+((m+n)/(t−n)))^n ]^(mn)   =lim_(t→∞) [(1+(1/((t−n)/(m+n))))^((t−n)/(m+n)) (1+((m+n)/(t−n)))^(n/(m+n)) ]^(mn(m+n))   =[e(1+0)^(n/(m+n)) ]^(mn(m+n))   =e^(mn(m+n))
limx0(1+mx1nx)mnx=limx0(1x+m1xn)mnx=limt[(t+mtn)t]mn=limt[(1+m+ntn)t]mn=limt[(1+m+ntn)tn(1+m+ntn)n]mn=limt[(1+1tnm+n)tnm+n(1+m+ntn)nm+n]mn(m+n)=[e(1+0)nm+n]mn(m+n)=emn(m+n)
Commented by john santu last updated on 03/Feb/20
lim_(x→0)  (1+(((n+m)x)/(1−nx)))^((mn)/x)   lim_(x→0) (1+(1/((((1−nx)/((n+m)x))))))^((mn)/x)   e^(lim_(x→0)  (((mn(m+n)x)/((1−nx)x)))) =e^(mn(m+n))  .
limx0(1+(n+m)x1nx)mnxlimx0(1+1(1nx(n+m)x))mnxelimx0(mn(m+n)x(1nx)x)=emn(m+n).
Answered by Joel578 last updated on 03/Feb/20
      L = lim_(x→0) { (((1 + mx)/(1 − nx)))^((mn)/x) }  ln L = lim_(x→0) {((mn)/x) . ln (((1 + mx)/(1 − nx)))}             = lim {((ln (1 + mx) − ln (1 − nx))/(x/(mn)))}  Using L′hopital, we get  ln L = lim_(x→0)  {(((m/(1 + mx)) − (((−n))/(1 − nx)) )/(1/(mn)))} = mn(m + n)  ⇒ L = e^(mn(m + n))
L=limx0{(1+mx1nx)mnx}lnL=limx0{mnx.ln(1+mx1nx)}=lim{ln(1+mx)ln(1nx)xmn}UsingLhopital,wegetlnL=limx0{m1+mx(n)1nx1mn}=mn(m+n)L=emn(m+n)

Leave a Reply

Your email address will not be published. Required fields are marked *