Menu Close

lim-x-0-1-mx-n-1-nx-m-x-2-




Question Number 121237 by benjo_mathlover last updated on 06/Nov/20
 lim_(x→0)  (((1+mx)^n −(1+nx)^m )/x^2 ) =?
$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left(\mathrm{1}+\mathrm{mx}\right)^{\mathrm{n}} −\left(\mathrm{1}+\mathrm{nx}\right)^{\mathrm{m}} }{\mathrm{x}^{\mathrm{2}} }\:=? \\ $$
Answered by liberty last updated on 06/Nov/20
 L′Hopital   lim_(x→0)  ((mn(1+mx)^(n−1) −mn(1+nx)^(m−1) )/(2x))    mn ×lim_(x→0)  ((m(n−1)(1+mx)^(n−2) −n(m−1)(1+nx)^(m−2) )/2)    ((mn)/2) × [ mn−m−mn+n ]  = ((mn(n−m))/2)
$$\:\mathrm{L}'\mathrm{Hopital} \\ $$$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{mn}\left(\mathrm{1}+\mathrm{mx}\right)^{\mathrm{n}−\mathrm{1}} −\mathrm{mn}\left(\mathrm{1}+\mathrm{nx}\right)^{\mathrm{m}−\mathrm{1}} }{\mathrm{2x}} \\ $$$$\:\:\mathrm{mn}\:×\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{m}\left(\mathrm{n}−\mathrm{1}\right)\left(\mathrm{1}+\mathrm{mx}\right)^{\mathrm{n}−\mathrm{2}} −\mathrm{n}\left(\mathrm{m}−\mathrm{1}\right)\left(\mathrm{1}+\mathrm{nx}\right)^{\mathrm{m}−\mathrm{2}} }{\mathrm{2}} \\ $$$$\:\:\frac{\mathrm{mn}}{\mathrm{2}}\:×\:\left[\:\mathrm{mn}−\mathrm{m}−\mathrm{mn}+\mathrm{n}\:\right] \\ $$$$=\:\frac{\mathrm{mn}\left(\mathrm{n}−\mathrm{m}\right)}{\mathrm{2}} \\ $$
Answered by Dwaipayan Shikari last updated on 06/Nov/20
lim_(x→0) ((1+mnx+((n(n−1))/(2!))m^2 x^2 −1−mnx−((m(m−1))/(2!))n^2 x^2 )/x^2 )  =x^2 ((n(n−1)m^2 −n^2 m(m−1))/(x^2 2!))=((−nm^2 +n^2 m)/2)  =((mn(n−m))/2)
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{1}+{mnx}+\frac{{n}\left({n}−\mathrm{1}\right)}{\mathrm{2}!}{m}^{\mathrm{2}} {x}^{\mathrm{2}} −\mathrm{1}−{mnx}−\frac{{m}\left({m}−\mathrm{1}\right)}{\mathrm{2}!}{n}^{\mathrm{2}} {x}^{\mathrm{2}} }{{x}^{\mathrm{2}} } \\ $$$$={x}^{\mathrm{2}} \frac{{n}\left({n}−\mathrm{1}\right){m}^{\mathrm{2}} −{n}^{\mathrm{2}} {m}\left({m}−\mathrm{1}\right)}{{x}^{\mathrm{2}} \mathrm{2}!}=\frac{−{nm}^{\mathrm{2}} +{n}^{\mathrm{2}} {m}}{\mathrm{2}} \\ $$$$=\frac{{mn}\left({n}−{m}\right)}{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *