Menu Close

lim-x-0-1-mx-n-1-nx-m-x-2-




Question Number 121237 by benjo_mathlover last updated on 06/Nov/20
 lim_(x→0)  (((1+mx)^n −(1+nx)^m )/x^2 ) =?
limx0(1+mx)n(1+nx)mx2=?
Answered by liberty last updated on 06/Nov/20
 L′Hopital   lim_(x→0)  ((mn(1+mx)^(n−1) −mn(1+nx)^(m−1) )/(2x))    mn ×lim_(x→0)  ((m(n−1)(1+mx)^(n−2) −n(m−1)(1+nx)^(m−2) )/2)    ((mn)/2) × [ mn−m−mn+n ]  = ((mn(n−m))/2)
LHopitallimx0mn(1+mx)n1mn(1+nx)m12xmn×limx0m(n1)(1+mx)n2n(m1)(1+nx)m22mn2×[mnmmn+n]=mn(nm)2
Answered by Dwaipayan Shikari last updated on 06/Nov/20
lim_(x→0) ((1+mnx+((n(n−1))/(2!))m^2 x^2 −1−mnx−((m(m−1))/(2!))n^2 x^2 )/x^2 )  =x^2 ((n(n−1)m^2 −n^2 m(m−1))/(x^2 2!))=((−nm^2 +n^2 m)/2)  =((mn(n−m))/2)
limx01+mnx+n(n1)2!m2x21mnxm(m1)2!n2x2x2=x2n(n1)m2n2m(m1)x22!=nm2+n2m2=mn(nm)2

Leave a Reply

Your email address will not be published. Required fields are marked *