Menu Close

lim-x-0-1-mx-n-1-nx-m-x-2-m-n-N-




Question Number 151979 by mathdanisur last updated on 24/Aug/21
lim_(x→0) (((1+mx)^n  - (1+nx)^m )/x^2 ) = ?  ;  m;n∈N
limx0(1+mx)n(1+nx)mx2=?;m;nN
Answered by mr W last updated on 24/Aug/21
(1+mx)^n =1+nmx+((n(n−1)m^2 )/2)x^2 +o(x^2 )  (1+nx)^m =1+mnx+((m(m−1)n^2 )/2)x^2 +o(x^2 )  ⇒L=((n(n−1)m^2 )/2)−((m(m−1)n^2 )/2)  ⇒L=((mn(n−m))/2)
(1+mx)n=1+nmx+n(n1)m22x2+o(x2)(1+nx)m=1+mnx+m(m1)n22x2+o(x2)L=n(n1)m22m(m1)n22L=mn(nm)2
Commented by mathdanisur last updated on 24/Aug/21
Thank You Ser
ThankYouSer
Commented by mathdanisur last updated on 25/Aug/21
Thank you Ser
ThankyouSer
Answered by mr W last updated on 24/Aug/21
L=((n(1+mx)^(n−1) m−m(1+nx)^(m−1) n)/(2x))  L=((n(n−1)(1+mx)^(n−2) m^2 −m(m−1)(1+nx)^(m−2) n^2 )/2)  L=((n(n−1)m^2 −m(m−1)n^2 )/2)  L=((mn(n−m))/2)
L=n(1+mx)n1mm(1+nx)m1n2xL=n(n1)(1+mx)n2m2m(m1)(1+nx)m2n22L=n(n1)m2m(m1)n22L=mn(nm)2
Answered by Kamel last updated on 25/Aug/21
With classic method:  L=lim_(x→0) (((1+mx)^n −(1+nx)^m )/x^2 ), m,n∈N.     =lim_(x→0) ((((1+mx)^n −1)−((1+nx)^m −1))/x^2 )    =lim_(x→0) ((mx(1+(1+mx)+(1+mx)^2 +...+(1+mx)^(n−1) )−nx(1+1+nx+(1+nx)^2 +...(1+nx)^(m−1) ))/x^2 )    =lim_(x→0) ((m(1+(1+mx)+(1+mx)^2 +...+(1+mx)^(n−1) )−n(1+1+nx+(1+nx)^2 +...(1+nx)^(m−1) ))/x)    =lim_(x→0) ((m(1+(1+mx)+(1+mx)^2 +...+(1+mx)^(n−1) −n)−n(1+1+nx+(1+nx)^2 +...(1+nx)^(m−1) −m))/x)    =lim_(x→0) [m(((1+mx−1)/x)+(((1+mx)^2 −1)/x)+...+(((1+mx)^(n−1) −1)/x))−n(((1+nx−1)/x)+(((1+nx)^2 −1)/x)+...+(((1+nx)^(m−1) −1)/x))]  lim_(x→0) (((1+ax)^p −1)/x)=((ax(1+1+ax+(1+ax)^2 +...+(1+ax)^(p−1) )/x)=ap  ∴ L=m(m+2m+3m+...+(n−1)m)−n(n+2n+3n+...n(m−1))          =m^2 ((n(n−1))/2)−n^2 ((m(m−1))/2)          =((mn)/2)(nm−m−nm+n)=((mn(n−m))/2)      ∴      lim_(x→0) (((1+mx)^n −(1+nx)^m )/x^2 )=((mn(n−m))/2)                                           KAMEL BENAICHA
Withclassicmethod:L=limx0(1+mx)n(1+nx)mx2,m,nN.=limx0((1+mx)n1)((1+nx)m1)x2=limx0mx(1+(1+mx)+(1+mx)2++(1+mx)n1)nx(1+1+nx+(1+nx)2+(1+nx)m1)x2=limx0m(1+(1+mx)+(1+mx)2++(1+mx)n1)n(1+1+nx+(1+nx)2+(1+nx)m1)x=limx0m(1+(1+mx)+(1+mx)2++(1+mx)n1n)n(1+1+nx+(1+nx)2+(1+nx)m1m)x=limx0[m(1+mx1x+(1+mx)21x++(1+mx)n11x)n(1+nx1x+(1+nx)21x++(1+nx)m11x)]limx0(1+ax)p1x=ax(1+1+ax+(1+ax)2++(1+ax)p1x=apL=m(m+2m+3m++(n1)m)n(n+2n+3n+n(m1))=m2n(n1)2n2m(m1)2=mn2(nmmnm+n)=mn(nm)2limx0(1+mx)n(1+nx)mx2=mn(nm)2KAMELBENAICHA
Commented by mathdanisur last updated on 25/Aug/21
Thank you Ser
ThankyouSer

Leave a Reply

Your email address will not be published. Required fields are marked *