Menu Close

lim-x-0-1-sin-2-x-1-x-2-please-solve-it-describely-




Question Number 170166 by sciencestudent last updated on 17/May/22
lim_(x→0) ((1/(sin^2 x))−(1/x^2 ))=?  please solve it describely.
$${li}\underset{{x}\rightarrow\mathrm{0}} {{m}}\left(\frac{\mathrm{1}}{{sin}^{\mathrm{2}} {x}}−\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)=? \\ $$$${please}\:{solve}\:{it}\:{describely}. \\ $$
Commented by mr W last updated on 17/May/22
it is solved descriptively enough!  if you don′t understand something,  you can tell what you don′t   understand, instead of posting the  same question again and again.
$${it}\:{is}\:{solved}\:{descriptively}\:{enough}! \\ $$$${if}\:{you}\:{don}'{t}\:{understand}\:{something}, \\ $$$${you}\:{can}\:{tell}\:{what}\:{you}\:{don}'{t}\: \\ $$$${understand},\:{instead}\:{of}\:{posting}\:{the} \\ $$$${same}\:{question}\:{again}\:{and}\:{again}. \\ $$
Answered by ajfour last updated on 17/May/22
consider   lim_(x→0)   aplpied on  both sides of steps that follow  (Lx^2 +1)=((x/(sin x)))^2   2Lx=2((x/(sin x)))(((sin x−xcos x)/(sin^2 x)))  L=((sin x−xcos x)/(sin^3 x))      =((cos x−(cos x−xsin x))/(3sin^2 x))     =(1/3)((x/(sin x)))  =(1/3)
$${consider}\:\:\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\:{aplpied}\:{on} \\ $$$${both}\:{sides}\:{of}\:{steps}\:{that}\:{follow} \\ $$$$\left({Lx}^{\mathrm{2}} +\mathrm{1}\right)=\left(\frac{{x}}{\mathrm{sin}\:{x}}\right)^{\mathrm{2}} \\ $$$$\mathrm{2}{Lx}=\mathrm{2}\left(\frac{{x}}{\mathrm{sin}\:{x}}\right)\left(\frac{\mathrm{sin}\:{x}−{x}\mathrm{cos}\:{x}}{\mathrm{sin}\:^{\mathrm{2}} {x}}\right) \\ $$$${L}=\frac{\mathrm{sin}\:{x}−{x}\mathrm{cos}\:{x}}{\mathrm{sin}\:^{\mathrm{3}} {x}} \\ $$$$\:\:\:\:=\frac{\mathrm{cos}\:{x}−\left(\mathrm{cos}\:{x}−{x}\mathrm{sin}\:{x}\right)}{\mathrm{3sin}\:^{\mathrm{2}} {x}} \\ $$$$\:\:\:=\frac{\mathrm{1}}{\mathrm{3}}\left(\frac{{x}}{\mathrm{sin}\:{x}}\right)\:\:=\frac{\mathrm{1}}{\mathrm{3}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *