Menu Close

lim-x-0-1-tan-1-x-sin-x-1-x-3-




Question Number 159727 by blackmamba last updated on 20/Nov/21
    lim_(x→0)  ((1+tan (1−((x/(sin x))))))^(1/x^3 )  ?
limx01+tan(1(xsinx))x3?
Answered by FongXD last updated on 20/Nov/21
L=lim_(x→0^+ ) [1+tan(1−(x/(sinx)))]^(1/x^3 )   L=lim_(x→0^+ ) {[1+tan(1−(x/(sinx)))]^(1/(tan(1−(x/(sinx))))) }^((tan(1−(x/(sinx))))/x^3 )   L=lim_(x→0^+ ) e^((tan(1−(x/(sinx))))/x^3 ) =e^(lim_(x→0^+ ) ((tan(1−(x/(sinx))))/(1−(x/(sinx))))×((sinx−x)/(x^3 sinx)))   L=e^(lim_(x→0^+ ) ((sinx−x)/x^3 )×lim_(x→0^+ ) (1/(sinx)))   where M=lim_(x→0^+ ) ((sinx−x)/x^3 )=lim_(x→0^+ ) ((sin3x−3x)/(27x^3 )) (change x to 3x)  ⇔ 27M=lim_(x→0^+ ) ((3sinx−4sin^3 x−3x)/x^3 )=3lim_(x→0^+ ) ((sinx−x)/x^3 )−4lim_(x→0^+ ) (((sinx)/x))^3   ⇔ 27M=3M−4, ⇒ M=lim_(x→0^+ ) ((sinx−x)/x^3 )=−(1/6)  then L=e^(−(1/6)lim_(x→0^+ ) (1/(sinx))) =0
L=limx0+[1+tan(1xsinx)]1x3L=limx0+{[1+tan(1xsinx)]1tan(1xsinx)}tan(1xsinx)x3L=limex0+tan(1xsinx)x3=elimx0+tan(1xsinx)1xsinx×sinxxx3sinxL=elimx0+sinxxx3×limx0+1sinxwhereM=limx0+sinxxx3=limx0+sin3x3x27x3(changexto3x)27M=limx0+3sinx4sin3x3xx3=3limx0+sinxxx34limx0+(sinxx)327M=3M4,M=limx0+sinxxx3=16thenL=e16limx0+1sinx=0

Leave a Reply

Your email address will not be published. Required fields are marked *