lim-x-0-1-tan-1-x-sin-x-1-x-3- Tinku Tara June 4, 2023 Limits 0 Comments FacebookTweetPin Question Number 159727 by blackmamba last updated on 20/Nov/21 limx→01+tan(1−(xsinx))x3? Answered by FongXD last updated on 20/Nov/21 L=limx→0+[1+tan(1−xsinx)]1x3L=limx→0+{[1+tan(1−xsinx)]1tan(1−xsinx)}tan(1−xsinx)x3L=limex→0+tan(1−xsinx)x3=elimx→0+tan(1−xsinx)1−xsinx×sinx−xx3sinxL=elimx→0+sinx−xx3×limx→0+1sinxwhereM=limx→0+sinx−xx3=limx→0+sin3x−3x27x3(changexto3x)⇔27M=limx→0+3sinx−4sin3x−3xx3=3limx→0+sinx−xx3−4limx→0+(sinxx)3⇔27M=3M−4,⇒M=limx→0+sinx−xx3=−16thenL=e−16limx→0+1sinx=0 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: L-lim-x-pi-3-3-4sin-2-x-sin-2x-sin-x-Q-lim-x-0-1-x-2-2-cos-2-x-cos-x-3-Next Next post: Question-94191 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.