Menu Close

lim-x-0-1-tan-2-x-6-sin-2-x-




Question Number 152287 by john_santu last updated on 27/Aug/21
    lim_(x→0)  (1−tan^2 x)^(6/(sin^2 x))  =?
limx0(1tan2x)6sin2x=?
Answered by iloveisrael last updated on 27/Aug/21
 lim_(x→0) (1−tan^2 x)^(6/(sin^2 x))  = e^(lim_(x→0) (1−tan^2 x−1).(6/(sin^2 x)))    =e^(lim_(x→0) (−tan^2 x).(6/(sin^2 x)))  = e^(lim_(x→0)  (−6cos^2 x))    = e^(−6)  = (1/e^6 ) .
limx0(1tan2x)6sin2x=elimx0(1tan2x1).6sin2x=elimx0(tan2x).6sin2x=elimx0(6cos2x)=e6=1e6.
Answered by john_santu last updated on 27/Aug/21
 lim_(x→0) [(1+(−tan^2 x))^(1/(−tan^2 x))  ]^(−((6tan^2 x)/(sin^2 x)))   = e^(lim_(x→0) (−6cos^2 x)) =e^(−6)
limx0[(1+(tan2x))1tan2x]6tan2xsin2x=elimx0(6cos2x)=e6

Leave a Reply

Your email address will not be published. Required fields are marked *