Menu Close

lim-x-0-1-tanx-1-sinx-1-sinx-




Question Number 144645 by mathdanisur last updated on 27/Jun/21
lim_(x→0) (((1 + tanx)/(1 + sinx)))^(1/(sinx)) = ?
limx0(1+tanx1+sinx)1sinx=?
Answered by liberty last updated on 27/Jun/21
 lim_(x→0) (((1+sin x+tan x−sin x)/(1+sin x)))^(1/(sin x))   = lim_(x→0) (1+((tan x−sin x)/(1+sin x)))^(1/(sin x))   = lim_(x→0) [(1+((tan x−sin x)/(1+sin x)))^((1+sin x)/(tan x−sin x)) ]^((tan x−sin x)/(sin x(1+sin x)))   =e^(lim_(x→0) (((tan x−sin x)/(sin x(1+sin x)))))   = e^(lim_(x→0) (((tan x(1−cos x))/(sin x(1+sin x)))))   = e^(0/1) = e^0  = 1.
limx0(1+sinx+tanxsinx1+sinx)1sinx=limx0(1+tanxsinx1+sinx)1sinx=limx0[(1+tanxsinx1+sinx)1+sinxtanxsinx]tanxsinxsinx(1+sinx)=elimx0(tanxsinxsinx(1+sinx))=elimx0(tanx(1cosx)sinx(1+sinx))=e01=e0=1.
Commented by mathdanisur last updated on 27/Jun/21
alot cool thank you Sir
alotcoolthankyouSir
Answered by mathmax by abdo last updated on 27/Jun/21
f(x)=(((1+tanx)/(1+sinx)))^(1/(sinx))  ⇒f(x)=(((1+sinx +tanx−sinx)/(1+sinx)))^(1/(sinx))   =(1+((tanx−sinx)/(1+sinx)))^(1/(sinx))  =e^((1/(sinx))log(1+((tanx−sinx)/(1+sinx))))  we have  log(1+((tanx−sinx)/(1+sinx)))∼((tanx−sinx)/(1+sinx))  ⇒(1/(sinx))log(...)∼((tanx−sinx)/(sinx(1+sinx)))  ∼((x+(x^3 /3)−(x−(x^3 /6)))/(x(1+x)))=(x^3 /(6x(1+x)))∼(x^2 /(6(1+x))) →0 (x→0) ⇒  lim_(x→0) f(x)=e^0  =1
f(x)=(1+tanx1+sinx)1sinxf(x)=(1+sinx+tanxsinx1+sinx)1sinx=(1+tanxsinx1+sinx)1sinx=e1sinxlog(1+tanxsinx1+sinx)wehavelog(1+tanxsinx1+sinx)tanxsinx1+sinx1sinxlog()tanxsinxsinx(1+sinx)x+x33(xx36)x(1+x)=x36x(1+x)x26(1+x)0(x0)limx0f(x)=e0=1
Commented by mathdanisur last updated on 27/Jun/21
Thanks Sir alot cool
ThanksSiralotcool

Leave a Reply

Your email address will not be published. Required fields are marked *