Menu Close

lim-x-0-1-tanx-cotx-




Question Number 28095 by tawa tawa last updated on 20/Jan/18
lim_(x→0^− )   (1 + tanx)^(−cotx)
limx0(1+tanx)cotx
Commented by abdo imad last updated on 20/Jan/18
= lim_(x→0^− )   e^(−cotanx ln(1+tanx))      but   ln (1+tanx) _(x∈V(0)) ∼  tanx  ⇒ −cotanx ln(1+tanx)  ∼ −((tanx)/(tanx))=−1  ⇒ lim_(x→0^(− ) )   (1+tanx)^(−cotanx)  =(1/e) .
=limx0ecotanxln(1+tanx)butln(1+tanx)xV(0)tanxcotanxln(1+tanx)tanxtanx=1limx0(1+tanx)cotanx=1e.
Commented by tawa tawa last updated on 21/Jan/18
God bless you sir
Godblessyousir

Leave a Reply

Your email address will not be published. Required fields are marked *