Menu Close

lim-x-0-1-x-1-ln-1-x-




Question Number 92256 by jagoll last updated on 05/May/20
lim_(x→0)  (1/x)−(1/(ln(1+x))) ?
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}}{\mathrm{x}}−\frac{\mathrm{1}}{\mathrm{ln}\left(\mathrm{1}+\mathrm{x}\right)}\:? \\ $$
Commented by $@ty@m123 last updated on 05/May/20
See Q. No. 87105
$${See}\:{Q}.\:{No}.\:\mathrm{87105} \\ $$
Commented by john santu last updated on 05/May/20
different sir with the   problem you mean
$$\mathrm{different}\:\mathrm{sir}\:\mathrm{with}\:\mathrm{the}\: \\ $$$$\mathrm{problem}\:\mathrm{you}\:\mathrm{mean}\: \\ $$
Commented by john santu last updated on 05/May/20
Commented by $@ty@m123 last updated on 05/May/20
Of course different. But the procedure would be similar. The main idea behind such questions is to use logarithmic expansion.
Commented by mathmax by abdo last updated on 05/May/20
we have ln^′ (1+x) =(1/(1+x)) =1−x +o(x) ⇒ln(1+x) =x−(x^2 /2)+o(x^2 )  ⇒(1/(ln(1+x))) =(1/x)×(1/(1−(x/2)+o(x))) ∼(1/x)(1+(x/2))=(1/x)+(1/2) ⇒  f(x)∼(1/x)−(1/x)−(1/2) ⇒lim_(x→0)   f(x) =−(1/2)
$${we}\:{have}\:{ln}^{'} \left(\mathrm{1}+{x}\right)\:=\frac{\mathrm{1}}{\mathrm{1}+{x}}\:=\mathrm{1}−{x}\:+{o}\left({x}\right)\:\Rightarrow{ln}\left(\mathrm{1}+{x}\right)\:={x}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}+{o}\left({x}^{\mathrm{2}} \right) \\ $$$$\Rightarrow\frac{\mathrm{1}}{{ln}\left(\mathrm{1}+{x}\right)}\:=\frac{\mathrm{1}}{{x}}×\frac{\mathrm{1}}{\mathrm{1}−\frac{{x}}{\mathrm{2}}+{o}\left({x}\right)}\:\sim\frac{\mathrm{1}}{{x}}\left(\mathrm{1}+\frac{{x}}{\mathrm{2}}\right)=\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{\mathrm{2}}\:\Rightarrow \\ $$$${f}\left({x}\right)\sim\frac{\mathrm{1}}{{x}}−\frac{\mathrm{1}}{{x}}−\frac{\mathrm{1}}{\mathrm{2}}\:\Rightarrow{lim}_{{x}\rightarrow\mathrm{0}} \:\:{f}\left({x}\right)\:=−\frac{\mathrm{1}}{\mathrm{2}} \\ $$
Answered by john santu last updated on 05/May/20

Leave a Reply

Your email address will not be published. Required fields are marked *