lim-x-0-1-x-1-x-e-1-x- Tinku Tara June 4, 2023 Limits 0 Comments FacebookTweetPin Question Number 96319 by M±th+et+s last updated on 31/May/20 limx→0((1+x)1xe)1x Answered by abdomathmax last updated on 31/May/20 f(x)=((1+x)1xe)1x⇒ln(f(x))=1xln((1+x)1xe)=1x(ln(1+x)1x−1)=1x(1xln(1+x)−1)=ln(1+x)−xx2hodpiral→limx→0ln(1+x)−xx2=limx→011+x−12x=limx→0−12(1+x2)=−12⇒ln(f(x))→−12⇒f(x)→e−12=1e Commented by M±th+et+s last updated on 31/May/20 niceworksirthankyou Commented by mathmax by abdo last updated on 31/May/20 youarewelcomesir. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-161854Next Next post: if-1-x-1-x-2-1-x-128-r-0-n-x-r-then-find-n- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.