Menu Close

lim-x-0-1-x-1-x-e-ex-2-x-2-




Question Number 113742 by bemath last updated on 15/Sep/20
 lim_(x→0)  (((1+x)^(1/x) −e−((ex)/2))/x^2 ) =?
limx0(1+x)1xeex2x2=?
Answered by bobhans last updated on 15/Sep/20
L = lim_(x→0)  (((1+x)^(1/x) −e−((ex)/2))/x^2 )   let y = (1+x)^(1/x)  →ln y =(1/x)ln (1+x)   ln y = (1/x)(x−(x^2 /2)+(x^3 /3)−(x^4 /4)+...)   ln y = 1−(x/2)+(x^2 /3)−(x^3 /4)+...         y = e^((1−(x/2)+(x^2 /3)−(x^3 /4)+...))   L = lim_(x→0)  ((e^((1−(x/2)+(x^2 /3)−(x^3 /4)+...)) −e−((ex)/2))/x^2 )  L = lim_(x→0)  ((e(1+(−(x/2)+(x^2 /3)−...)+(1/(2!))(−(x/2)+(x^2 /3)−...)^2 +...))/x^2 )  L = lim_(x→0)  (((e+((ex)/2)+((11ex^2 )/(24))+...)−e−((ex)/2))/x^2 )  L= lim_(x→0)  (((11ex^2 )/(24))/x^2 ) = ((11e)/(24))
L=limx0(1+x)1xeex2x2lety=(1+x)1xlny=1xln(1+x)lny=1x(xx22+x33x44+)lny=1x2+x23x34+y=e(1x2+x23x34+)L=limx0e(1x2+x23x34+)eex2x2L=limx0e(1+(x2+x23)+12!(x2+x23)2+)x2L=limx0(e+ex2+11ex224+)eex2x2L=limx011ex224x2=11e24
Answered by mathmax by abdo last updated on 16/Sep/20
let  f(x) =(((1+x)^(1/x) −e−((ex)/2))/x^2 ) ⇒f(x) =((e^((1/x)ln(1+x)) −e−((ex)/2))/x^2 )  we have (d/dx)ln(1+x) =(1/(1+x)) =1−x +x^2  +o(x^3 ) ⇒  ln(1+x) =x−(x^2 /2) +(x^3 /3) +o(x^4 ) ⇒((ln(1+x))/x) =1−(x/2)+(x^2 /3) +o(x^3 ) ⇒  e^((1/x)ln(1+x))  =e e^(−(x/2)+(x^2 /3)+o(x^3 ))  ∼e (1−(x/2)+(x^2 /3)) =e−((ex)/2)+((ex^2 )/3) ⇒  e^((1/x)ln(1+x)) −e+((ex)/2) ∼ ((ex^2 )/3) ⇒f(x) ∼(e/3) ⇒lim_(x→0)   f(x)=(e/3)  i think the Q is lim_(x→0)     (((1+x)^(1/x) −e+((ex)/2))/x^2 ) ...!
letf(x)=(1+x)1xeex2x2f(x)=e1xln(1+x)eex2x2wehaveddxln(1+x)=11+x=1x+x2+o(x3)ln(1+x)=xx22+x33+o(x4)ln(1+x)x=1x2+x23+o(x3)e1xln(1+x)=eex2+x23+o(x3)e(1x2+x23)=eex2+ex23e1xln(1+x)e+ex2ex23f(x)e3limx0f(x)=e3ithinktheQislimx0(1+x)1xe+ex2x2!

Leave a Reply

Your email address will not be published. Required fields are marked *