Menu Close

lim-x-0-1-x-2-cot-2-x-




Question Number 83859 by john santu last updated on 06/Mar/20
lim_(x→0)  ((1/x^2 )− cot^2 x)= ?
limx0(1x2cot2x)=?
Commented by john santu last updated on 06/Mar/20
lim_(x→0)  ((1/x^2 )−(1/(tan^2 x))) =   lim_(x→0)  ((((tan x−x)(tan x+x))/(x^2  tan^2 x))) =   lim_(x→0)  (((tan x+x)/x)) × lim_(x→0)  (((tan x−x)/(x tan^2  x))) =  2 × lim_(x→0)  (((1/2)sin 2x − xcos^2  x)/(x sin^2  x)) =   2 × lim_(x→0)  ((cos 2x−[cos^2 x−xsin 2x])/(sin^2 x+x sin 2x))  2 × lim_(x→0)  ((cos^2 x−1+xsin 2x)/(sin^2 x+xsin 2x))  2 ×lim_(x→0)  ((−x^2 +2x^2 )/(3x^2 )) = (2/3)
limx0(1x21tan2x)=limx0((tanxx)(tanx+x)x2tan2x)=limx0(tanx+xx)×limx0(tanxxxtan2x)=2×limx012sin2xxcos2xxsin2x=2×limx0cos2x[cos2xxsin2x]sin2x+xsin2x2×limx0cos2x1+xsin2xsin2x+xsin2x2×limx0x2+2x23x2=23

Leave a Reply

Your email address will not be published. Required fields are marked *