Menu Close

lim-x-0-1-x-2-cot-2-x-




Question Number 155120 by mnjuly1970 last updated on 25/Sep/21
     lim_( x →0) ((1/x^( 2) ) − cot^( 2) (x))=?
$$ \\ $$$$\:\:\:{lim}_{\:{x}\:\rightarrow\mathrm{0}} \left(\frac{\mathrm{1}}{{x}^{\:\mathrm{2}} }\:−\:{cot}^{\:\mathrm{2}} \left({x}\right)\right)=? \\ $$$$ \\ $$
Answered by john_santu last updated on 25/Sep/21
 lim_(x→0) ((1/x^2 )−cot^2 x)=lim_(x→0) ((1/x^2 )−(1/(tan^2 x)))  =lim_(x→0) (((tan x+x)/(tan x)))×lim_(x→0) (((tan x−x)/(x^2  tan x)))  =2 ×(1/3)=(2/3)
$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{1}}{{x}^{\mathrm{2}} }−\mathrm{cot}\:^{\mathrm{2}} {x}\right)=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{1}}{{x}^{\mathrm{2}} }−\frac{\mathrm{1}}{\mathrm{tan}\:^{\mathrm{2}} {x}}\right) \\ $$$$=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{tan}\:{x}+{x}}{\mathrm{tan}\:{x}}\right)×\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{tan}\:{x}−{x}}{{x}^{\mathrm{2}} \:\mathrm{tan}\:{x}}\right) \\ $$$$=\mathrm{2}\:×\frac{\mathrm{1}}{\mathrm{3}}=\frac{\mathrm{2}}{\mathrm{3}} \\ $$
Commented by mnjuly1970 last updated on 25/Sep/21
grateful...
$${grateful}… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *