Menu Close

lim-x-0-1-x-2-cot-2-x-




Question Number 182560 by universe last updated on 11/Dec/22
 lim_(x→0)  (1/x^2 ) − cot^2 x =  ?
$$\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\:−\:\mathrm{cot}^{\mathrm{2}} {x}\:=\:\:? \\ $$
Answered by cortano1 last updated on 11/Dec/22
 = lim_(x→0)  ((tan x−x)/x^3 ) . lim_(x→0)  ((tan x+x)/x)   = (1/3) × 2=(2/3)
$$\:=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{tan}\:\mathrm{x}−\mathrm{x}}{\mathrm{x}^{\mathrm{3}} }\:.\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{tan}\:\mathrm{x}+\mathrm{x}}{\mathrm{x}} \\ $$$$\:=\:\frac{\mathrm{1}}{\mathrm{3}}\:×\:\mathrm{2}=\frac{\mathrm{2}}{\mathrm{3}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *