Menu Close

lim-x-0-1-x-2-should-the-answer-be-or-is-it-DNE-my-main-question-is-when-lim-x-a-f-x-does-it-not-exist-is-it-DNE-




Question Number 152211 by nitu last updated on 26/Aug/21
lim_(x→0)   (1/x^2 )  should the answer be ∞ or is it DNE.  my main question is,  when,  lim_(x→a)  f(x) = ∞   does it not exist? is it DNE?
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\:\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{2}} } \\ $$$$\mathrm{should}\:\mathrm{the}\:\mathrm{answer}\:\mathrm{be}\:\infty\:\mathrm{or}\:\mathrm{is}\:\mathrm{it}\:\mathrm{DNE}. \\ $$$$\mathrm{my}\:\mathrm{main}\:\mathrm{question}\:\mathrm{is}, \\ $$$$\mathrm{when}, \\ $$$$\underset{{x}\rightarrow\mathrm{a}} {\mathrm{lim}}\:\mathrm{f}\left(\mathrm{x}\right)\:=\:\infty\: \\ $$$$\mathrm{does}\:\mathrm{it}\:\mathrm{not}\:\mathrm{exist}?\:\mathrm{is}\:\mathrm{it}\:\mathrm{DNE}? \\ $$
Commented by MJS_new last updated on 26/Aug/21
lim_(x→0)  (1/x) does not exist because lim_(x→0^− ) (1/x) ≠ lim_(x→0^+ ) (1/x)  lim_(x→0)  (1/x^2 ) =+∞  obviously there′s a difference...
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}}{{x}}\:\mathrm{does}\:\mathrm{not}\:\mathrm{exist}\:\mathrm{because}\:\underset{{x}\rightarrow\mathrm{0}^{−} } {\mathrm{lim}}\frac{\mathrm{1}}{{x}}\:\neq\:\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\frac{\mathrm{1}}{{x}} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\:=+\infty \\ $$$$\mathrm{obviously}\:\mathrm{there}'\mathrm{s}\:\mathrm{a}\:\mathrm{difference}… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *