lim-x-0-1-x-2-x-n-x-n-1-x- Tinku Tara June 4, 2023 Limits 0 Comments FacebookTweetPin Question Number 164702 by mathls last updated on 20/Jan/22 limx→0(1x+2x+⋅⋅⋅+nxn)1x=? Answered by mahdipoor last updated on 21/Jan/22 limx→0A=limx→01xln(1x+…+nxn)⇒Hop⇒=limx→0(1x.ln1+…nx.lnn)/n(1x+…+nx)/n1=(ln1+…+lnn)/n(1+…+1)/n=ln(n!)/nlimx→0(1x+…+nxn)1x=elimx→0A=eln(n!)/n=(n!)1/n Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-164699Next Next post: Question-33629 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.