Menu Close

lim-x-0-1-x-2-x-n-x-n-1-x-




Question Number 164702 by mathls last updated on 20/Jan/22
lim_(x→0) (((1^x +2^x +∙∙∙+n^x )/n))^(1/x) =?
limx0(1x+2x++nxn)1x=?
Answered by mahdipoor last updated on 21/Jan/22
lim_(x→0) A=lim_(x→0) (1/x)ln(((1^x +...+n^x )/n))⇒Hop⇒  =lim_(x→0) ((((1^x .ln1+...n^x .lnn)/n)/((1^x +...+n^x )/n))/1)=(((ln1+...+lnn)/n)/((1+...+1)/n))  =ln(n!)/n  lim_(x→0) (((1^x +...+n^x )/n))^(1/x) =e^(lim_(x→0) A) =e^(ln(n!)/n) =(n!)^(1/n)
limx0A=limx01xln(1x++nxn)Hop=limx0(1x.ln1+nx.lnn)/n(1x++nx)/n1=(ln1++lnn)/n(1++1)/n=ln(n!)/nlimx0(1x++nxn)1x=elimx0A=eln(n!)/n=(n!)1/n

Leave a Reply

Your email address will not be published. Required fields are marked *