Menu Close

lim-x-0-1-x-2-x-n-x-n-1-x-




Question Number 164705 by Kayela last updated on 20/Jan/22
lim_(x→0) (((1^x +2^x +...+n^x )/n))^(1/x)
limx0(1x+2x++nxn)1x
Answered by Berlindo last updated on 20/Jan/22
=[lim_(x→0) (1+((1^x +2^x +...+n^x −n)/n))^(n/(1^x +2^x +...+n^x −n)) ]^(lim_(x→0) ((1^x +2^x +...+n^x −n)/x)∙(1/n))   =e^(lim_(x→0) (((1^x −1)+(2^x −1)+...+(n^x −1))/x)∙(1/n))   =e^([lim_(x→0) ((1^x −1)/x)+lim_(x→0) ((2^x −1)/x)+...+lim_(x→0) ((n^x −1)/x)]∙(1/n))   =e^((ln 1+ln 2+...+ln n)∙(1/n)) =e^((1/n)ln (n!)) =e^(ln (((n!))^(1/n) ))   =((n!))^(1/n)   ∴lim_(x→0) (((1^x +2^x +...+n^x )/n))^(1/x) =((n!))^(1/n)                                  ★Berlindo Ndala★
=[limx0(1+1x+2x++nxnn)n1x+2x++nxn]limx01x+2x++nxnx1n=elimx0(1x1)+(2x1)++(nx1)x1n=e[limx01x1x+limx02x1x++limx0nx1x]1n=e(ln1+ln2++lnn)1n=e1nln(n!)=eln(n!n)=n!nlimx0(1x+2x++nxn)1x=n!nBerlindoNdala
Answered by puissant last updated on 21/Jan/22
=lim_(x→0) (((e^(xln1) +e^(xln2) +...+e^(xlnn) )/n))^(1/x)   =lim_(x→0) ((((1+xln1)+(1+xln2)+...+(1+xlnn))/n))^(1/x)   =lim_(x→0)  (1+((xln(n!))/n))^(1/x)   = lim_(x→0)  e^((1/x)ln(1+((xln(n!))/n)))  = lim_(x→0)  e^((1/x)(((xln(n!))/n)))   = e^(((ln(n!))/n) ) = ((n!))^(1/n) ..                ............Le puissant...........
=limx0(exln1+exln2++exlnnn)1x=limx0((1+xln1)+(1+xln2)++(1+xlnn)n)1x=limx0(1+xln(n!)n)1x=limx0e1xln(1+xln(n!)n)=limx0e1x(xln(n!)n)=eln(n!)n=n!n..Lepuissant..

Leave a Reply

Your email address will not be published. Required fields are marked *