Menu Close

lim-x-0-1-x-a-1-x-for-a-R-Don-t-using-L-hospital-rules-




Question Number 25379 by A1B1C1D1 last updated on 09/Dec/17
lim_(x → 0)  ((((1 + x)^a  − 1)/x)) for a ∈ R    Don′t using L′hospital rules.
limx0((1+x)a1x)foraRDontusingLhospitalrules.
Answered by Rasheed.Sindhi last updated on 10/Dec/17
lim_(x→0)  ((((1 + x)^n  − 1)/x))  lim_(x→0)  ((((1 +(n/1) x+((n(n−1))/(1.2))x^2 +((n(n−1)(n−2))/(1.2.3))x^3 +...− 1)/x))  lim_(x→0)  (((((n/1) x+((n(n−1))/(1.2))x^2 +((n(n−1)(n−2))/(1.2.3))x^3 +...))/x))  lim_(x→0) ((n/1) +((n(n−1))/(1.2))x+((n(n−1)(n−2))/(1.2.3))x^2 +...)  =n
limx0((1+x)n1x)limx0((1+n1x+n(n1)1.2x2+n(n1)(n2)1.2.3x3+1x)limx0((n1x+n(n1)1.2x2+n(n1)(n2)1.2.3x3+)x)limx0(n1+n(n1)1.2x+n(n1)(n2)1.2.3x2+)=n
Commented by A1B1C1D1 last updated on 09/Dec/17
Thank you
Thankyou
Answered by moxhix last updated on 10/Dec/17
another way  put f(x)=(1+x)^a   f ′(x)=a(1+x)^(a−1) →f ′(0)=a  f ′(0)=lim_(x→0) (((1+x)^a −(1+0)^a )/(x−0))  ∴lim_(x→0) (((1+x)^a −1)/x)=a
anotherwayputf(x)=(1+x)af(x)=a(1+x)a1f(0)=af(0)=limx0(1+x)a(1+0)ax0limx0(1+x)a1x=a

Leave a Reply

Your email address will not be published. Required fields are marked *