Menu Close

lim-x-0-1-x-n-1-1-x-x-2-x-n-n-1-x-x-2-x-n-n-1-x-x-2-x-n-1-n-1-1-x-x-2-x-n-1-n-1-




Question Number 162926 by qaz last updated on 02/Jan/22
lim_(x→0) (1/x^(n+1) )[(1+x+(x/2)+...+(x^n /n))^(1/(x+(x/2)+...+(x^n /n))) −(1+x+(x/2)+...+(x^(n+1) /(n+1)))^(1/(x+(x/2)+...+(x^(n+1) /(n+1)))) ]=?
$$\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{1}}{\mathrm{x}^{\mathrm{n}+\mathrm{1}} }\left[\left(\mathrm{1}+\mathrm{x}+\frac{\mathrm{x}}{\mathrm{2}}+…+\frac{\mathrm{x}^{\mathrm{n}} }{\mathrm{n}}\right)^{\frac{\mathrm{1}}{\mathrm{x}+\frac{\mathrm{x}}{\mathrm{2}}+…+\frac{\mathrm{x}^{\mathrm{n}} }{\mathrm{n}}}} −\left(\mathrm{1}+\mathrm{x}+\frac{\mathrm{x}}{\mathrm{2}}+…+\frac{\mathrm{x}^{\mathrm{n}+\mathrm{1}} }{\mathrm{n}+\mathrm{1}}\right)^{\frac{\mathrm{1}}{\mathrm{x}+\frac{\mathrm{x}}{\mathrm{2}}+…+\frac{\mathrm{x}^{\mathrm{n}+\mathrm{1}} }{\mathrm{n}+\mathrm{1}}}} \right]=? \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *