Menu Close

lim-x-0-1-x-x-




Question Number 180139 by Khalmohmmad last updated on 07/Nov/22
lim_(x→0) ((1/x))^x =?
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{1}}{{x}}\right)^{{x}} =? \\ $$
Commented by CElcedricjunior last updated on 07/Nov/22
lim_(x→0) ((1/x))^x =l  posons X=(1/x)=>qd:x−>0 ;X−>∞  lim_(X→+∞) (X)^(1/X) =lim_(X→∞)  e^((lnX)/X) =1 cas lim_(x→∞) ((lnx)/x)=0  ..............le celebre cedric junior....
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{1}}{\boldsymbol{{x}}}\right)^{\boldsymbol{{x}}} =\boldsymbol{{l}} \\ $$$$\boldsymbol{{posons}}\:\boldsymbol{{X}}=\frac{\mathrm{1}}{\boldsymbol{{x}}}=>\boldsymbol{{qd}}:\boldsymbol{{x}}−>\mathrm{0}\:;\boldsymbol{{X}}−>\infty \\ $$$$\underset{\boldsymbol{{X}}\rightarrow+\infty} {\mathrm{lim}}\left(\boldsymbol{{X}}\right)^{\frac{\mathrm{1}}{\boldsymbol{\mathrm{X}}}} =\underset{\boldsymbol{\mathrm{X}}\rightarrow\infty} {\mathrm{lim}}\:\boldsymbol{{e}}^{\frac{\boldsymbol{{lnX}}}{\boldsymbol{{X}}}} =\mathrm{1}\:\boldsymbol{{cas}}\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\frac{\boldsymbol{{lnx}}}{\boldsymbol{{x}}}=\mathrm{0} \\ $$$$…………..\boldsymbol{{le}}\:\boldsymbol{{celebre}}\:\boldsymbol{{cedric}}\:\boldsymbol{{junior}}…. \\ $$
Answered by puissant last updated on 09/Nov/22
=lim_(x→0^+ )  e^(−xlnx)  = e^0  = 1.
$$=\underset{{x}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\:{e}^{−{xlnx}} \:=\:{e}^{\mathrm{0}} \:=\:\mathrm{1}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *