Menu Close

lim-x-0-12-6x-2-12cos-x-x-4-




Question Number 91154 by jagoll last updated on 28/Apr/20
lim_(x→0)  ((12−6x^2 −12cos x)/x^4 )
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{12}−\mathrm{6}{x}^{\mathrm{2}} −\mathrm{12cos}\:{x}}{{x}^{\mathrm{4}} } \\ $$
Commented by jagoll last updated on 28/Apr/20
lim_(x→0)  ((6(2−x^2 −2cos x))/x^4 ) =   lim_(x→0)  ((6(−2x+2sin x))/(4x^3 )) =   lim_(x→0)  ((6(−2+2cos x))/(12x^2 )) =   lim_(x→0)  ((−2sin x)/(4x)) = −(1/2)
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{6}\left(\mathrm{2}−{x}^{\mathrm{2}} −\mathrm{2cos}\:{x}\right)}{{x}^{\mathrm{4}} }\:=\: \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{6}\left(−\mathrm{2}{x}+\mathrm{2sin}\:{x}\right)}{\mathrm{4}{x}^{\mathrm{3}} }\:=\: \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{6}\left(−\mathrm{2}+\mathrm{2cos}\:{x}\right)}{\mathrm{12}{x}^{\mathrm{2}} }\:=\: \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{−\mathrm{2sin}\:{x}}{\mathrm{4}{x}}\:=\:−\frac{\mathrm{1}}{\mathrm{2}} \\ $$
Answered by john santu last updated on 28/Apr/20
lim_(x→0) ((12−6x^2 −12(1−(x^2 /2)+(x^4 /(24))))/x^4 ) =  lim_(x→0)  ((12−6x^2 −12+6x^2 −(x^4 /2))/x^4 ) =  lim_(x→0)  ((−(x^4 /2))/x^4 ) = −(1/2)
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{12}−\mathrm{6}{x}^{\mathrm{2}} −\mathrm{12}\left(\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}+\frac{{x}^{\mathrm{4}} }{\mathrm{24}}\right)}{{x}^{\mathrm{4}} }\:= \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{12}−\mathrm{6}{x}^{\mathrm{2}} −\mathrm{12}+\mathrm{6}{x}^{\mathrm{2}} −\frac{{x}^{\mathrm{4}} }{\mathrm{2}}}{{x}^{\mathrm{4}} }\:= \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{−\frac{{x}^{\mathrm{4}} }{\mathrm{2}}}{{x}^{\mathrm{4}} }\:=\:−\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *