Menu Close

lim-x-0-2-1-sin-2-3x-1-3-1-sin-2-2x-1-3-x-2-




Question Number 105114 by john santu last updated on 26/Jul/20
lim_(x→0) ((2−((1−sin ^2 (3x)))^(1/3) −((1−sin ^2 (2x)))^(1/3) )/x^2 )
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{2}−\sqrt[{\mathrm{3}}]{\mathrm{1}−\mathrm{sin}\:\:^{\mathrm{2}} \left(\mathrm{3}{x}\right)}−\sqrt[{\mathrm{3}}]{\mathrm{1}−\mathrm{sin}\:\:^{\mathrm{2}} \left(\mathrm{2}{x}\right)}}{{x}^{\mathrm{2}} } \\ $$
Answered by bemath last updated on 26/Jul/20
lim_(x→0) ((2−(1−((sin ^2 (3x))/3))−(1−((sin ^2 (2x))/3)))/x^2 )  lim_(x→0) (((1/3)(sin ^2 (3x)+sin^2 (2x)))/x^2 ) =        →(1/3)(9+4) = ((13)/3)
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{2}−\left(\mathrm{1}−\frac{\mathrm{sin}\:\:^{\mathrm{2}} \left(\mathrm{3}{x}\right)}{\mathrm{3}}\right)−\left(\mathrm{1}−\frac{\mathrm{sin}\:\:^{\mathrm{2}} \left(\mathrm{2}{x}\right)}{\mathrm{3}}\right)}{{x}^{\mathrm{2}} } \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\frac{\mathrm{1}}{\mathrm{3}}\left(\mathrm{sin}\:\:^{\mathrm{2}} \left(\mathrm{3}{x}\right)+\mathrm{sin}\:^{\mathrm{2}} \left(\mathrm{2}{x}\right)\right)}{{x}^{\mathrm{2}} }\:= \\ $$$$\:\:\:\:\:\:\rightarrow\frac{\mathrm{1}}{\mathrm{3}}\left(\mathrm{9}+\mathrm{4}\right)\:=\:\frac{\mathrm{13}}{\mathrm{3}} \\ $$
Answered by OlafThorendsen last updated on 26/Jul/20
lim_(x→0) ((2−((1−9x^2 ))^(1/3) −((1−4x^2 ))^(1/3) )/x^2 )  lim_(x→0) ((2−(1−3x^2 )−(1−(4/3)x^2 ))/x^2 )  = ((13)/3)
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{2}−\sqrt[{\mathrm{3}}]{\mathrm{1}−\mathrm{9}{x}^{\mathrm{2}} }−\sqrt[{\mathrm{3}}]{\mathrm{1}−\mathrm{4}{x}^{\mathrm{2}} }}{{x}^{\mathrm{2}} } \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{2}−\left(\mathrm{1}−\mathrm{3}{x}^{\mathrm{2}} \right)−\left(\mathrm{1}−\frac{\mathrm{4}}{\mathrm{3}}{x}^{\mathrm{2}} \right)}{{x}^{\mathrm{2}} } \\ $$$$=\:\frac{\mathrm{13}}{\mathrm{3}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *