Menu Close

lim-x-0-2-cos-x-cos-x-x-2-




Question Number 192651 by beto last updated on 24/May/23
  lim_(x→0) ((2−(√(cos(x)))−cos(x))/x^2 )
$$ \\ $$$${lim}_{{x}\rightarrow\mathrm{0}} \frac{\mathrm{2}−\sqrt{{cos}\left({x}\right)}−{cos}\left({x}\right)}{{x}^{\mathrm{2}} } \\ $$
Answered by cortano12 last updated on 24/May/23
 L=lim_(x→0)  (((1−(√(cos x)))+(1−cos x))/x^2 )   L=lim_(x→0)  ((1−cos x)/(2x^2 )) +lim_(x→0)  ((1−cos x)/x^2 )   L= lim_(x→0)  ((3(1−cos x))/(2x^2 ))   L=lim_(x→0) ((3.sin^2 x)/(4x^2 )) =(3/4)
$$\:\mathrm{L}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\left(\mathrm{1}−\sqrt{\mathrm{cos}\:\mathrm{x}}\right)+\left(\mathrm{1}−\mathrm{cos}\:\mathrm{x}\right)}{\mathrm{x}^{\mathrm{2}} } \\ $$$$\:\mathrm{L}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}−\mathrm{cos}\:\mathrm{x}}{\mathrm{2x}^{\mathrm{2}} }\:+\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{1}−\mathrm{cos}\:\mathrm{x}}{\mathrm{x}^{\mathrm{2}} } \\ $$$$\:\mathrm{L}=\:\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{3}\left(\mathrm{1}−\mathrm{cos}\:\mathrm{x}\right)}{\mathrm{2x}^{\mathrm{2}} } \\ $$$$\:\mathrm{L}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{3}.\mathrm{sin}\:^{\mathrm{2}} \mathrm{x}}{\mathrm{4x}^{\mathrm{2}} }\:=\frac{\mathrm{3}}{\mathrm{4}} \\ $$
Answered by Subhi last updated on 24/May/23
lim_(x→0) (1/2)+((1−(√(cos(x))))/x^2 ).((1+(√(cos(x))))/(1+(√(cos(x)))))  (1/2)+((1−cos(x))/(x^2 .(1+(√(cos(x))))))  (1/2)+((2sin^2 ((x/2)))/(x^2 (1+(√(cos(x))))))  lim_(x→0) ( (1/2)+(1/(2.(1+(√(cos(x)))))))=(1/2)+(1/4)=(3/4)
$$\mathrm{lim}_{\mathrm{x}\rightarrow\mathrm{0}} \frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}−\sqrt{{cos}\left({x}\right)}}{{x}^{\mathrm{2}} }.\frac{\mathrm{1}+\sqrt{{cos}\left({x}\right)}}{\mathrm{1}+\sqrt{{cos}\left({x}\right)}} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}−{cos}\left({x}\right)}{{x}^{\mathrm{2}} .\left(\mathrm{1}+\sqrt{{cos}\left({x}\right)}\right)} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{2}{sin}^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)}{{x}^{\mathrm{2}} \left(\mathrm{1}+\sqrt{{cos}\left({x}\right)}\right)} \\ $$$${lim}_{{x}\rightarrow\mathrm{0}} \left(\:\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{2}.\left(\mathrm{1}+\sqrt{{cos}\left({x}\right)}\right)}\right)=\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{4}}=\frac{\mathrm{3}}{\mathrm{4}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *