Menu Close

lim-x-0-2-sinx-x-sin-x-2-cos-x-2-x-




Question Number 184881 by mathlove last updated on 13/Jan/23
lim_(x→0) ((((√2)sinx)/x))^((sin(x/2)cos(x/2))/x) =?
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\sqrt{\mathrm{2}}{sinx}}{{x}}\right)^{\frac{{sin}\frac{{x}}{\mathrm{2}}{cos}\frac{{x}}{\mathrm{2}}}{{x}}} =? \\ $$
Answered by aba last updated on 13/Jan/23
lim_(x→0) ((sin((x/2))cos((x/2)))/x)=lim_(x→0) ((sin(x))/(2x))=(1/2)  lim_(x→0) ((((√2)sin(x))/x))^((sin((x/2))cos((x/2)))/x) =lim_(x→0) ((((√2)sin(x))/x))^(lim_(x→0) (((sin((x/2))cos((x/2)))/x)))                                                      =((√2))^(1/2)                                                      =^4 (√2)
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{sin}\left(\frac{\mathrm{x}}{\mathrm{2}}\right)\mathrm{cos}\left(\frac{\mathrm{x}}{\mathrm{2}}\right)}{\mathrm{x}}=\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{sin}\left(\mathrm{x}\right)}{\mathrm{2x}}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\sqrt{\mathrm{2}}\mathrm{sin}\left(\mathrm{x}\right)}{\mathrm{x}}\right)^{\frac{\mathrm{sin}\left(\frac{\mathrm{x}}{\mathrm{2}}\right)\mathrm{cos}\left(\frac{\mathrm{x}}{\mathrm{2}}\right)}{\mathrm{x}}} =\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\sqrt{\mathrm{2}}\mathrm{sin}\left(\mathrm{x}\right)}{\mathrm{x}}\right)^{\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\left(\frac{\mathrm{sin}\left(\frac{\mathrm{x}}{\mathrm{2}}\right)\mathrm{cos}\left(\frac{\mathrm{x}}{\mathrm{2}}\right)}{\mathrm{x}}\right)} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\left(\sqrt{\mathrm{2}}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=^{\mathrm{4}} \sqrt{\mathrm{2}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *