Menu Close

lim-x-0-2-x-cos-x-sin-x-




Question Number 120425 by bobhans last updated on 31/Oct/20
 lim_(x→0)  ((2^x −cos x)/(sin x)) ?
limx02xcosxsinx?
Answered by john santu last updated on 31/Oct/20
 lim_(x→0)  ((2^x −cos x)/(sin x)) = lim_(x→0)  (((2^x −cos x)x)/(xsin x))  = lim_(x→0)  (((2^x −cos x)/x)).(x/(sin x))  = lim_(x→0)  ((2^x −cos x)/x) . lim_(x→0)  (x/(sin x))  = lim_(x→0)  ((2^x  ln 2+sin x)/1) . 1 = ln 2.
limx02xcosxsinx=limx0(2xcosx)xxsinx=limx0(2xcosxx).xsinx=limx02xcosxx.limx0xsinx=limx02xln2+sinx1.1=ln2.
Answered by Lordose last updated on 31/Oct/20
lim_(x→0)  ((2^x −cosx)/(sinx)) = lim_(x→0) ((2^x ln2−sinx)/1) = ln2
limx02xcosxsinx=limx02xln2sinx1=ln2
Answered by Dwaipayan Shikari last updated on 31/Oct/20
lim_(x→0) ((2^x −cosx)/(sinx))=lim_(x→0) ((2^x −1)/x)      (cosx→1     sinx→x)  =lim_(x→0) (((xlog(2)+1−1))/x)=log(2)         lim_(x→0) a^x =xlog(a)+1
limx02xcosxsinx=limx02x1x(cosx1sinxx)=limx0(xlog(2)+11)x=log(2)limx0ax=xlog(a)+1
Answered by mathmax by abdo last updated on 31/Oct/20
2^x =e^(xln2)  ∼1+xln2    ,cosx ∼1−(x^2 /2)  sinx∼x−(x^3 /6) ⇒((2^x −cosx)/(sinx))∼((1+xln2−1+(x^2 /2))/(x−(x^3 /6)))  =((ln2+(x/2))/(1−(x^2 /6))) ⇒lim_(x→0)    ((2^x −cosx)/(sinx)) =ln(2)
2x=exln21+xln2,cosx1x22sinxxx362xcosxsinx1+xln21+x22xx36=ln2+x21x26limx02xcosxsinx=ln(2)

Leave a Reply

Your email address will not be published. Required fields are marked *