Menu Close

lim-x-0-2x-6-3x-2-3tan-2-x-3x-6-




Question Number 91182 by jagoll last updated on 28/Apr/20
lim_(x→0)  ((2x^6 +3x^2 −3tan^2 x)/(3x^6 ))
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{2}{x}^{\mathrm{6}} +\mathrm{3}{x}^{\mathrm{2}} −\mathrm{3tan}\:^{\mathrm{2}} {x}}{\mathrm{3}{x}^{\mathrm{6}} } \\ $$
Answered by john santu last updated on 28/Apr/20
lim_(x→0)  ((2x^6 +3x^2 −3(x^2 +(((x^2 )^3 )/3)))/(3x^6 )) =  lim_(x→0)  ((2x^6 +3x^2 −3x^2 −x^6 )/(3x^6 )) = (1/3)
$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{2}{x}^{\mathrm{6}} +\mathrm{3}{x}^{\mathrm{2}} −\mathrm{3}\left({x}^{\mathrm{2}} +\frac{\left({x}^{\mathrm{2}} \right)^{\mathrm{3}} }{\mathrm{3}}\right)}{\mathrm{3}{x}^{\mathrm{6}} }\:= \\ $$$$\underset{{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{2}{x}^{\mathrm{6}} +\mathrm{3}{x}^{\mathrm{2}} −\mathrm{3}{x}^{\mathrm{2}} −{x}^{\mathrm{6}} }{\mathrm{3}{x}^{\mathrm{6}} }\:=\:\frac{\mathrm{1}}{\mathrm{3}} \\ $$
Commented by jagoll last updated on 28/Apr/20
sir answer (2/3) or (1/3) ?
$${sir}\:{answer}\:\frac{\mathrm{2}}{\mathrm{3}}\:{or}\:\frac{\mathrm{1}}{\mathrm{3}}\:? \\ $$
Commented by MJS last updated on 28/Apr/20
(1/3)  2x^6 +3x^2 −3x^2 −x^6
$$\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$\mathrm{2}{x}^{\mathrm{6}} +\mathrm{3}{x}^{\mathrm{2}} −\mathrm{3}{x}^{\mathrm{2}} −{x}^{\mathrm{6}} \\ $$
Commented by jagoll last updated on 28/Apr/20
thank you sir mjs and john
$${thank}\:{you}\:{sir}\:{mjs}\:{and}\:{john}\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *