Menu Close

lim-x-0-3sin-pix-sin-3pix-x-3-




Question Number 122106 by bemath last updated on 14/Nov/20
  lim_(x→0)  ((3sin (πx)−sin (3πx))/x^3 ) =?
limx03sin(πx)sin(3πx)x3=?
Answered by liberty last updated on 14/Nov/20
  lim_(x→0)  ((3(πx−((π^3 x^3 )/6))−(3πx−((27π^3 x^3 )/6)))/x^3 )    lim_(x→0)  ((−((π^3 x^3 )/2) + ((9π^3 x^3 )/2))/x^3 ) = 4π^3 . ▲
limx03(πxπ3x36)(3πx27π3x36)x3limx0π3x32+9π3x32x3=4π3.
Answered by Bird last updated on 14/Nov/20
f(x)=((3sin(πx)−sin(3πx))/x^3 )  ⇒f(x)=_(πx=t)  π^3   ×((3sin(t)−sin(3t))/t^3 )  we have sint ∼t−(t^3 /6)  sin(3t)∼3t−((27t^3 )/6) =3t−(9/2)t^3   ⇒f((t/π))∼π^3 .((3t−(t^3 /2)−3t+(9/2)t^3 )/t^3 )  ⇒f((t/π))∼4π^3   ⇒lim_(x→0) f(x)=4π^3
f(x)=3sin(πx)sin(3πx)x3f(x)=πx=tπ3×3sin(t)sin(3t)t3wehavesinttt36sin(3t)3t27t36=3t92t3f(tπ)π3.3tt323t+92t3t3f(tπ)4π3limx0f(x)=4π3

Leave a Reply

Your email address will not be published. Required fields are marked *