Menu Close

lim-x-0-3tan-4x-12tan-x-3sin-4x-12sin-x-




Question Number 128674 by bemath last updated on 09/Jan/21
 lim_(x→0)  ((3tan 4x−12tan x)/(3sin 4x−12sin x)) = ?
limx03tan4x12tanx3sin4x12sinx=?
Answered by liberty last updated on 09/Jan/21
 Taylor series  { ((tan x=x+(x^3 /3)+((2x^5 )/(15))+...)),((tan 4x=4x+((64x^3 )/3)+((2(4x)^5 )/(15))+...)) :}   lim_(x→0)  ((3(4x+((64x^3 )/3)+o(x^5 ))−12(x+(x^3 /3)+o(x^5 )))/(3(4x−((64x^3 )/6)+o(x^5 ))−12(x−(x^3 /6)+o(x^5 )))) =   lim_(x→0)   ((60x^3 −9(o(x^5 )))/(−30x^3 −9(o(x^5 )))) = −2.
Taylorseries{tanx=x+x33+2x515+tan4x=4x+64x33+2(4x)515+limx03(4x+64x33+o(x5))12(x+x33+o(x5))3(4x64x36+o(x5))12(xx36+o(x5))=limx060x39(o(x5))30x39(o(x5))=2.

Leave a Reply

Your email address will not be published. Required fields are marked *